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Classical st-Vertex Cut Problem: Find a vertex cut that separates two vertices s and t.
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Classical st-Vertex Cut Problem: Find a vertex cut that separates two vertices s and t.

Classical st-Vertex Cut Algorithm: Start with a clean slate and achieve an optimal or feasible solution
efficiently.
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st-Vertex Cut Discovery Problem: Find a vertex cut between s and t with small modification cost.
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Input: A graph G, two vertices s, € V(G), an infeasible st-vertex cut NF, and an integer b.
Output: Compute a feasible st-vertex cut F such that F can be obtained from NF in at most b token slides.
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Solution Discovery problems occur frequently in the real world, for example [Siraichi et al. 2018].
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Solution Discovery Algorithm is not...

I1-discovery:

Input: A graph G, aninfeasible Il NF, and an integer b.
Output: Compute a feasible I1 F such that I’ can be obtained from NF in at most b token slides.

Reoptimization algorithm: given an Independent Set instance with
a feasible solution and an orange edge to add to the instance
i} compute a feasible solution efficiently.
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Reoptimization algorithm: given an Independent Set instance with
a feasible solution and an orange edge to add to the instance
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| . .

. for modification costs!

@ a resource, a token
Solution Discovery Algorithms are also different from..
[. Dynamic Graph Algorithms [II. Local Search Algorithms

[I. Combinatorial Reconfiguration Algorithms
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[Fellows et al, 2023], [Grobler et al. 2024] show NP-hardness for all these solution discovery problems.
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p: parameter x: instance for classical problem
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A parameterized problem with an algorithm that runs in g(p) - | x| time, where g is a function, is in FPT.
FPT C W[1] C W][2] C ... C XNLP
XNLP-hard: W[t]-hard for every t.

Every parameterized problem in FPT has a kernel [Cai et al. 1997].

Algorithm A

initial instance reduced instance
”W; polynomial time W
>
Ssv SsO
(x,p) x’,p)

(x,p) 1S a yes-instance < (x,p’) 1S a yes-instance
3f 1 V. i (&, p") < A((x, p)) then |x'| + p’ < f(p)

Every parameterized problem in FPT has a kernel; not all are polynomial.

p: parameter x: instance for classical problem
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Our Results

We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].

p: parameter x: instance for classical problem k: number of tokens b: number of token slides

Stephanie Maaz Kernelization Complexity of Solution Discovery Problems /



Our Results

We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].
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st-Vertex Cut Discovery with Respect to Parameter k
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st-Vertex Cut Discovery with Respect to Parameter k

If an or-cross-composition from a classical NP-hard problem A into a parameterized problem B exists =
no polynomial kernel for B unless NP C coNP\ poly [Bodlaender et al. 2014].

p: parameter x: instance for classical problem k: number of tokens b: number of token slides
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Reduction from Rainbow Matching to st-Vertex Cut Discovery

b c d ¢

f
Selection Gadget

Tokens

Vertices representing

........ b+ 1 edges m = 6 edges of H

[f a cut can be reached in fewer than b token slides, the vertices that remain free in the gadgets represent the
edges of the rainbow matching (and vice versa).

p: parameter x: instance for classical problem k: number of tokens b: number of token slides s, L vertices to cut r: size of matching
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