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 [Fellows et al, 2023], [Grobler et al. 2024] show NP-hardness for all these solution discovery problems.

We consider for : st-Vertex Cut, Independent Set, Vertex Cover, Dominating Set, Matching, Shortest PathΠ

Related Work
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 If a cut can be reached in fewer than  token slides, the vertices that remain free in the gadgets represent the 
edges of the rainbow matching (and vice versa). 
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Thank you.
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