

# Kernelization Complexity of Solution Discovery Problems

Mario Grobler<sup>1</sup>, Stephanie Maaz<sup>2</sup>, Amer E. Mouawad<sup>3</sup>, Naomi Nishimura<sup>2</sup>,  
Vijayaragunathan Ramamoorthi<sup>1</sup>, Sebastian Siebertz<sup>1</sup>

<sup>1</sup>University of Bremen, Germany

<sup>2</sup>University of Waterloo, Canada

<sup>3</sup>American University of Beirut, Lebanon

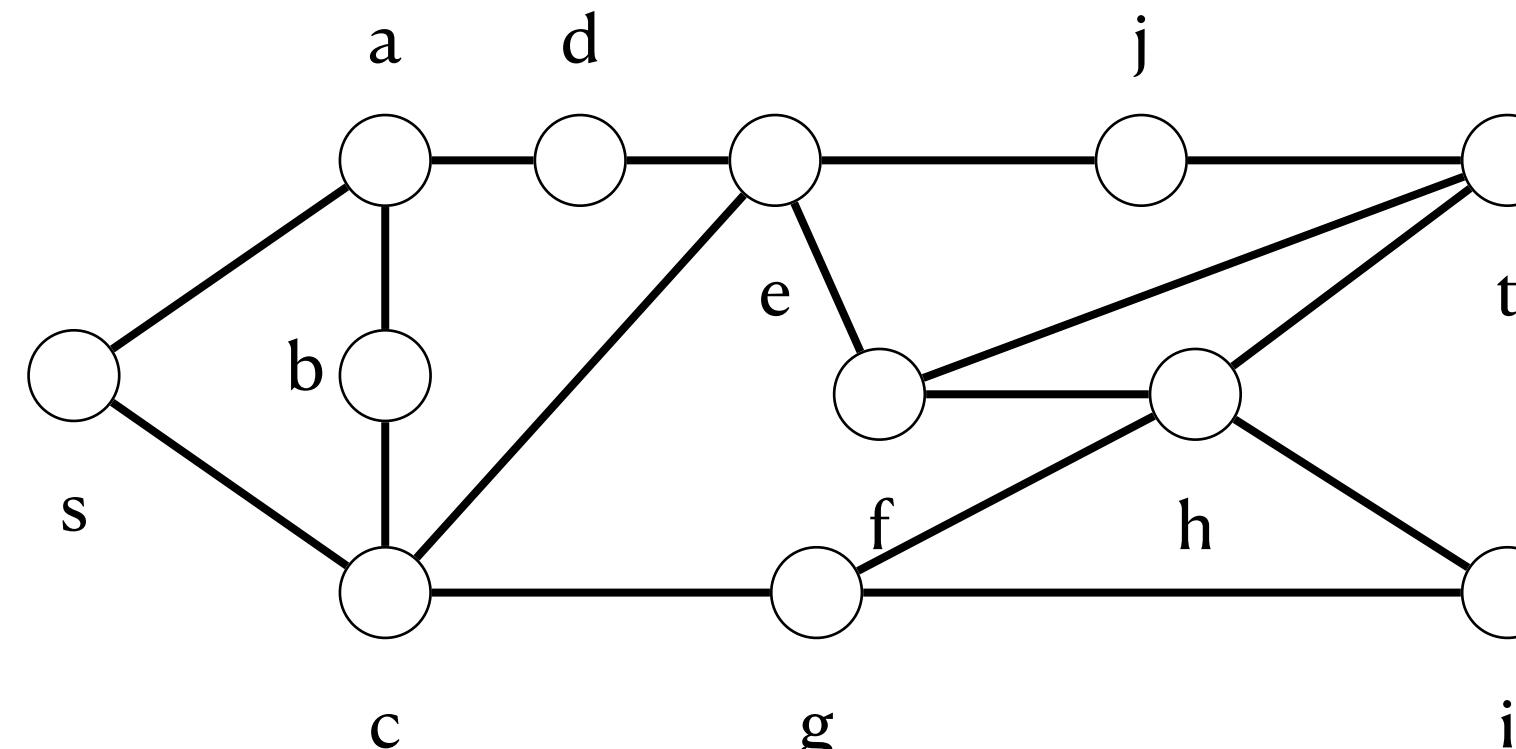
December 11, 2024

ISAAC 2024

The 35th International Symposium on Algorithms and Computation

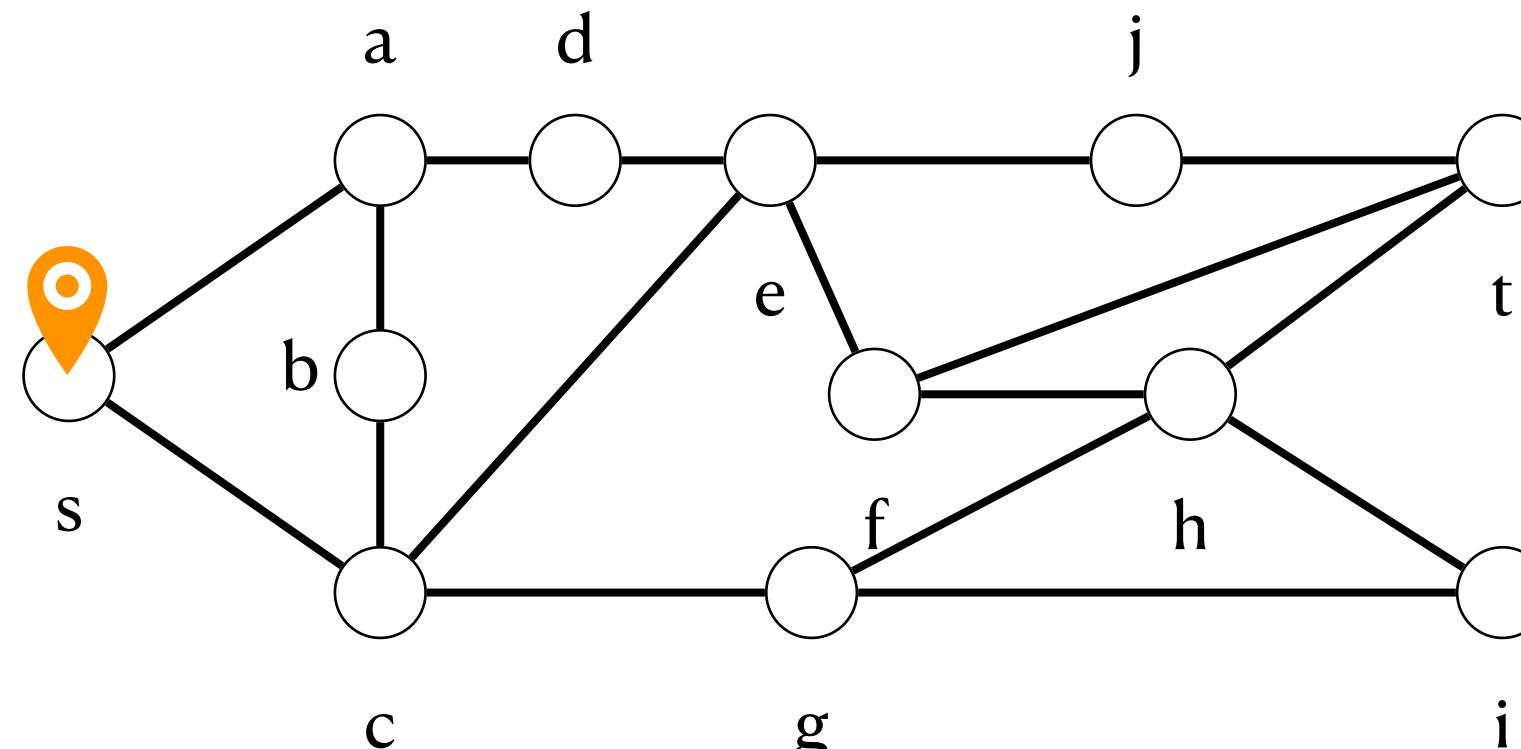
# st-Vertex Cut Discovery Problem

# st-Vertex Cut Discovery Problem



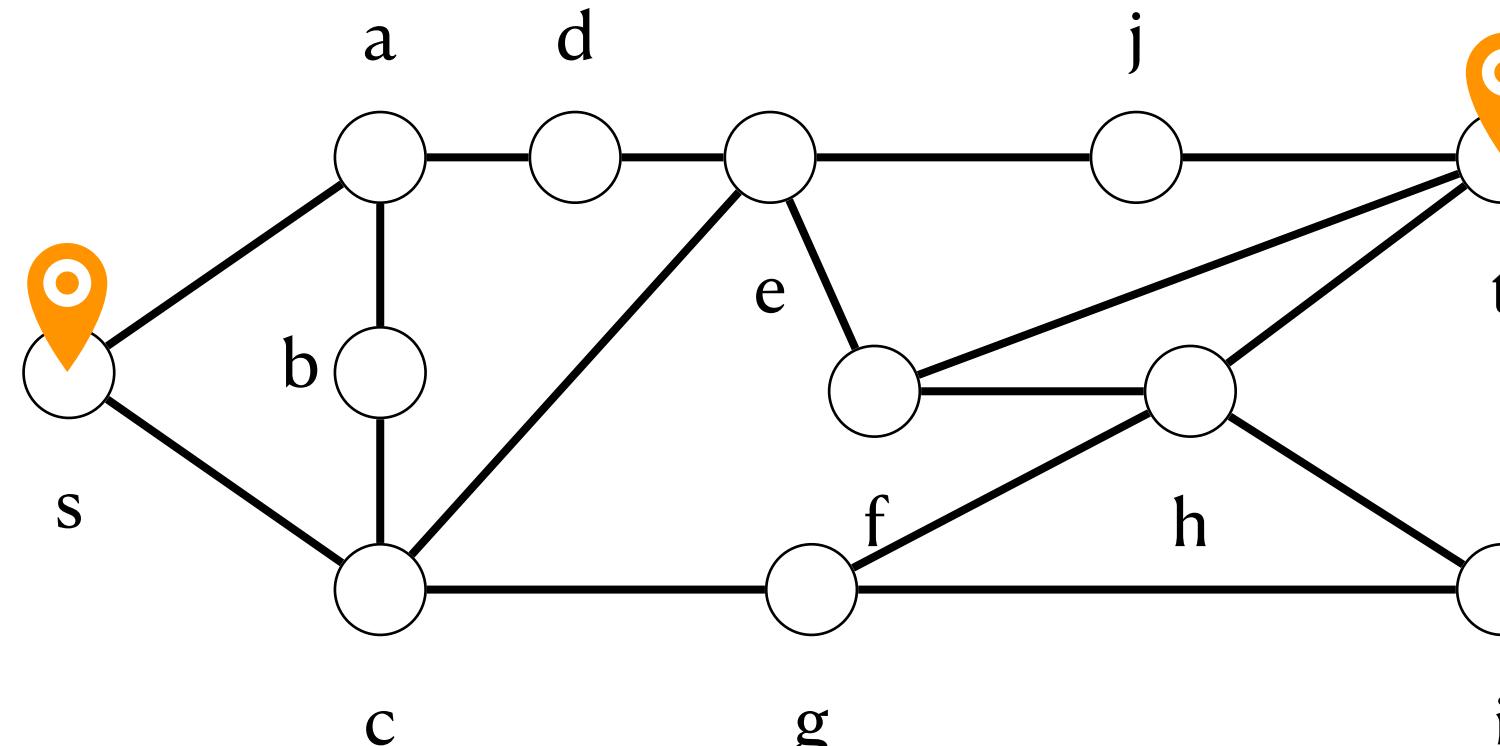
- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.

# st-Vertex Cut Discovery Problem



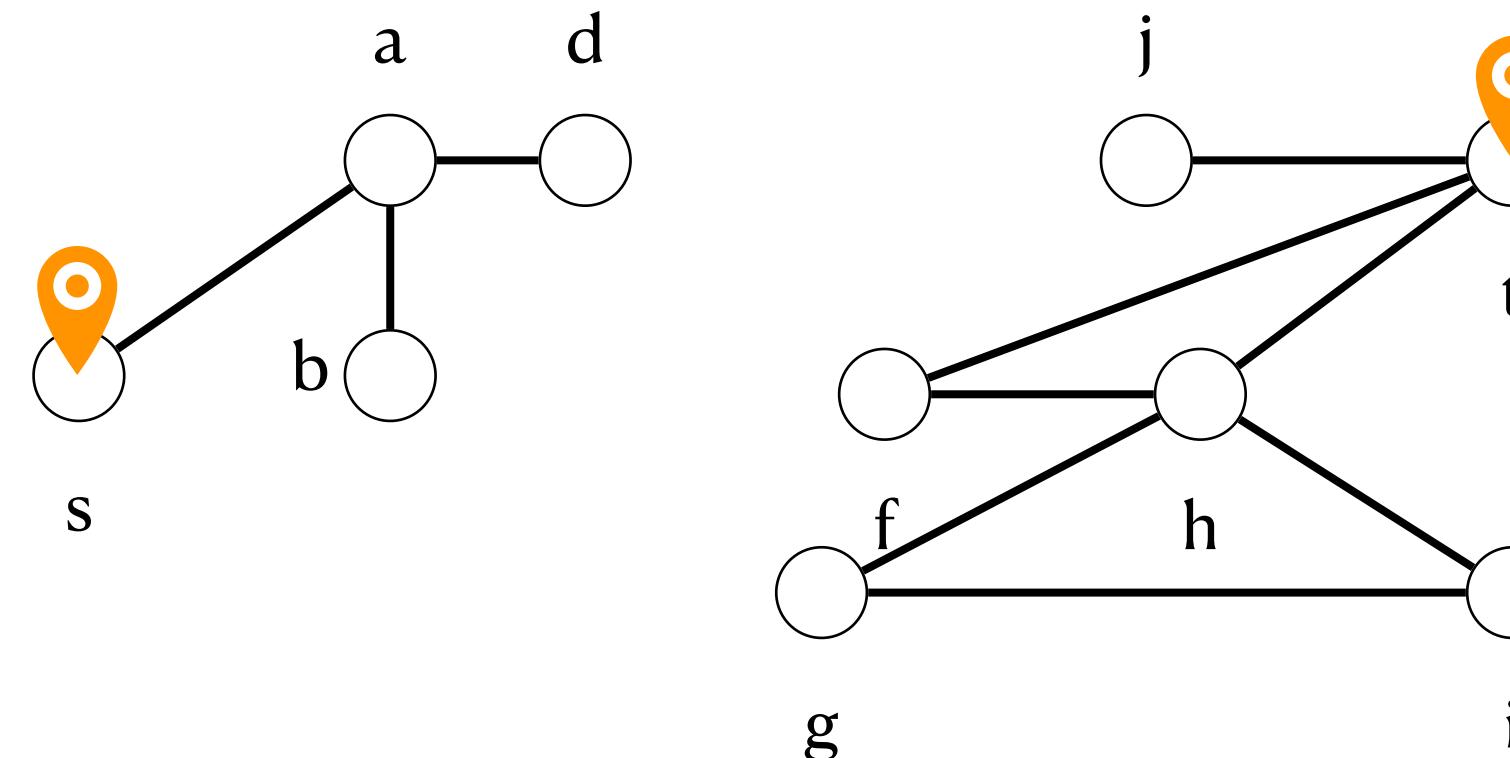
• **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .

# st-Vertex Cut Discovery Problem



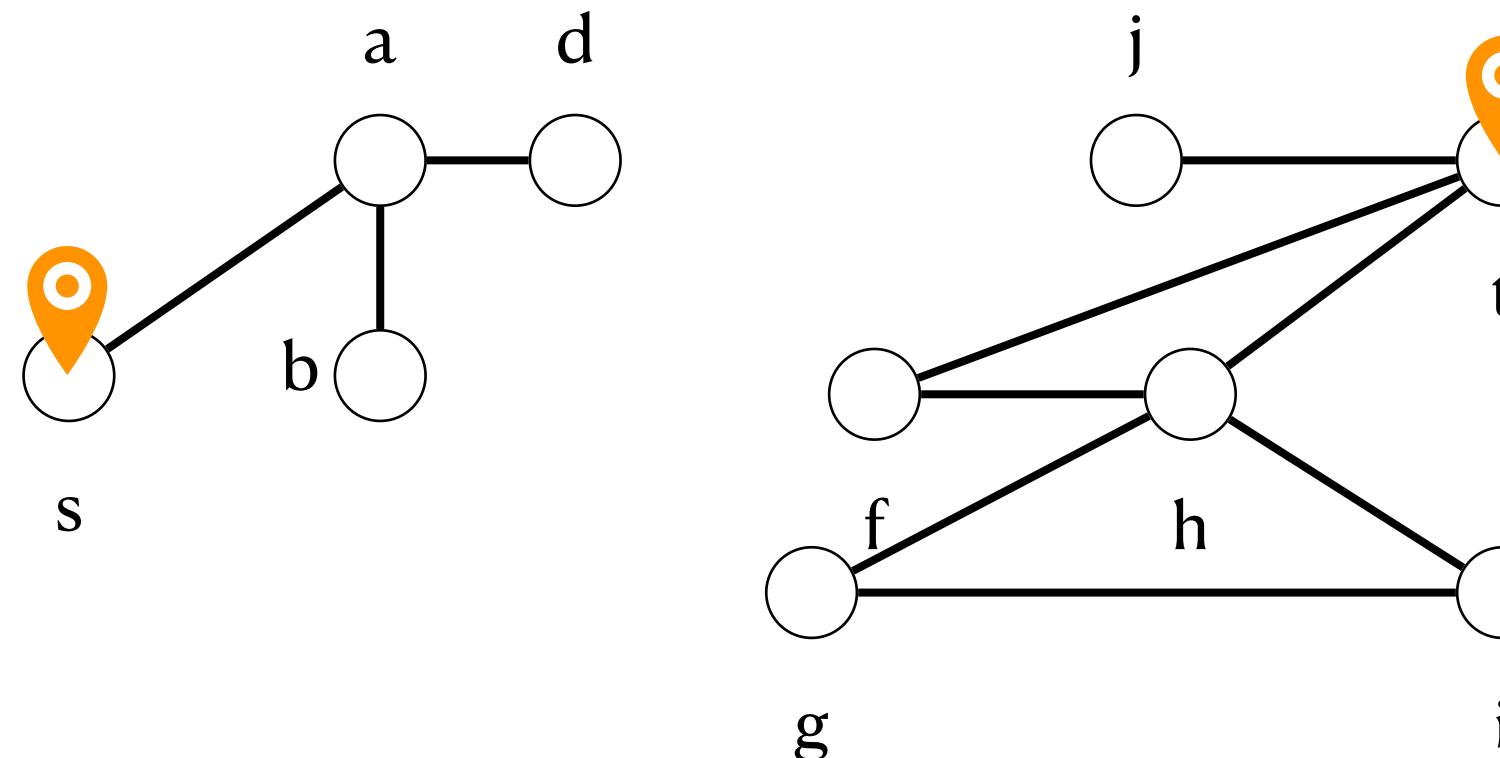
- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.

# st-Vertex Cut Discovery Problem



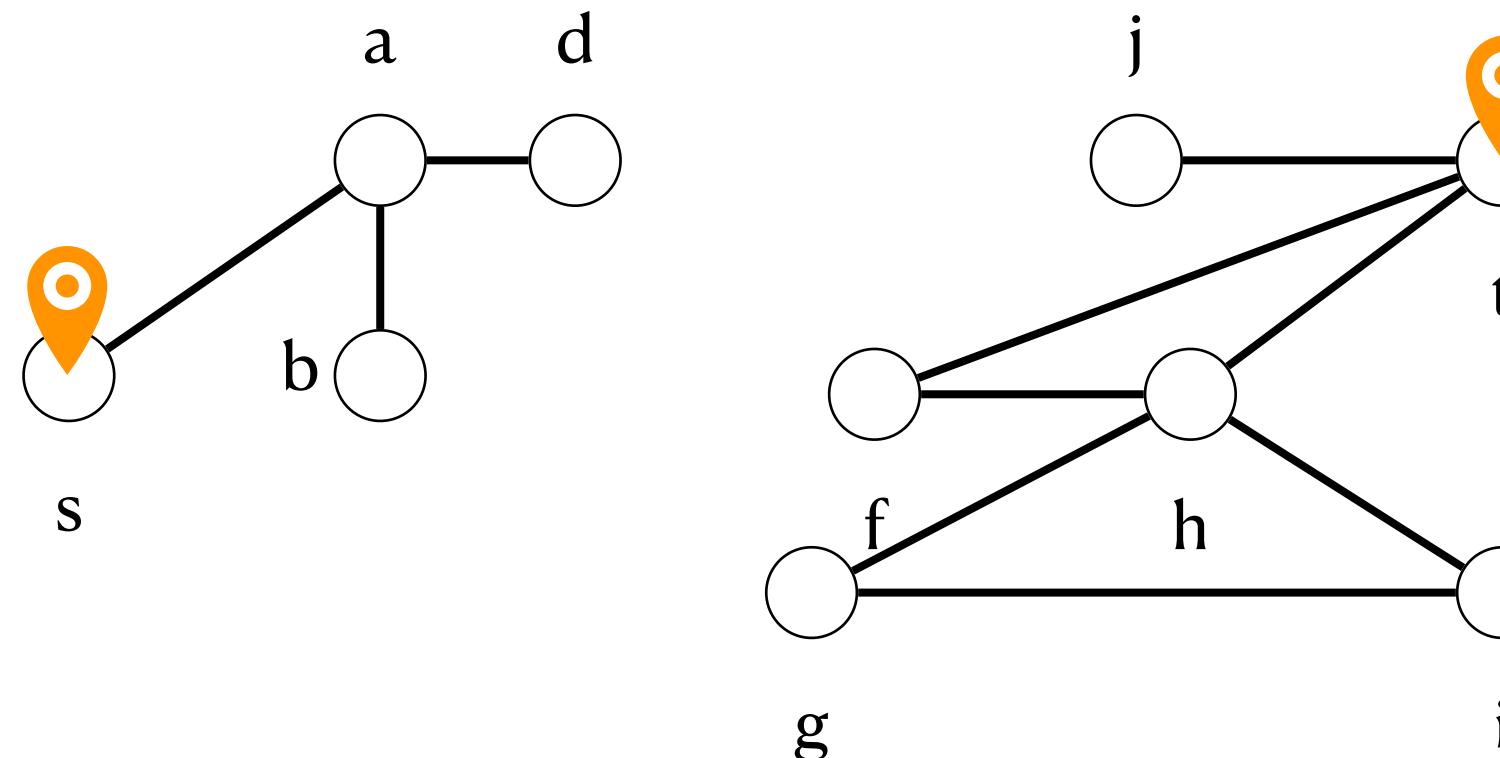
- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.

# st-Vertex Cut Discovery Problem

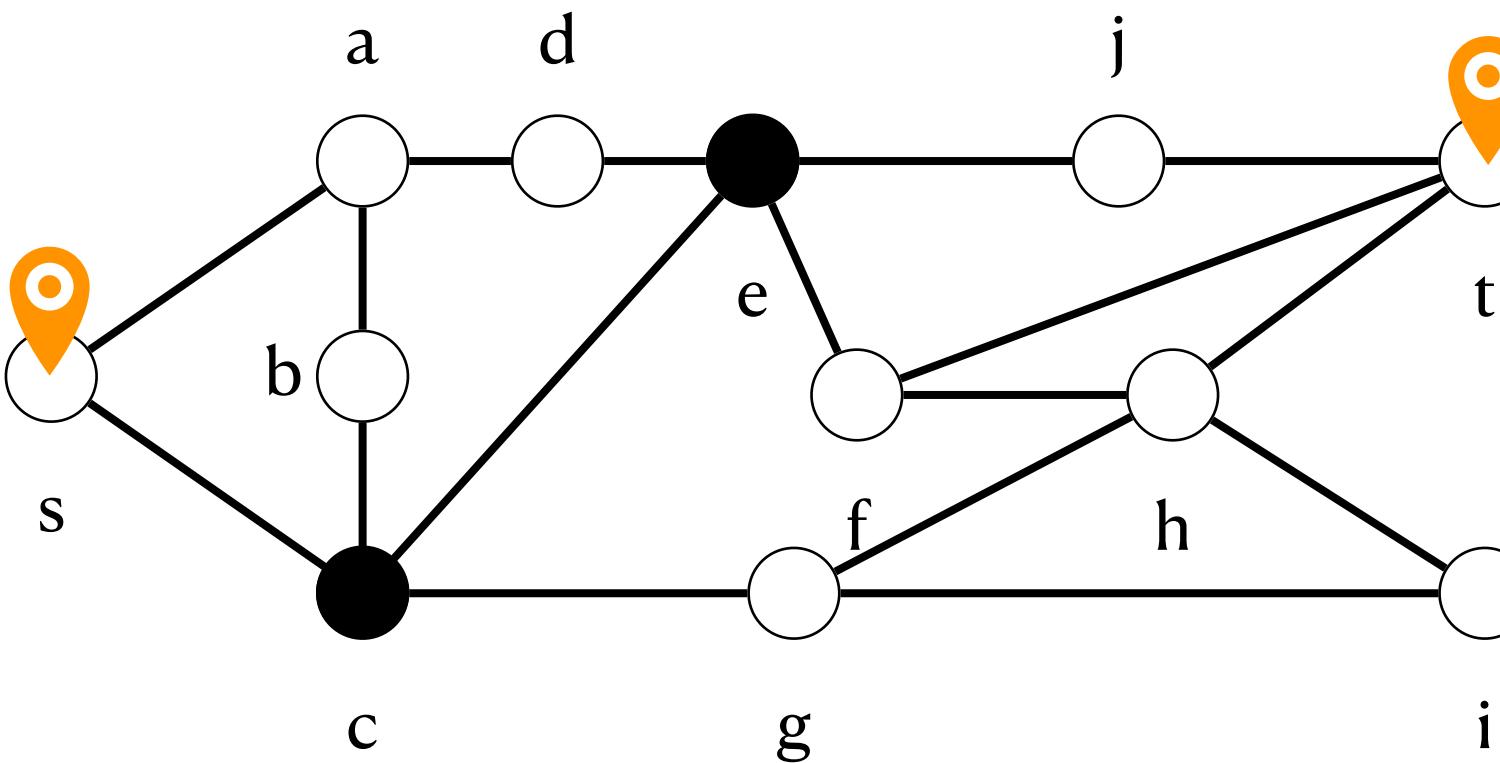


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

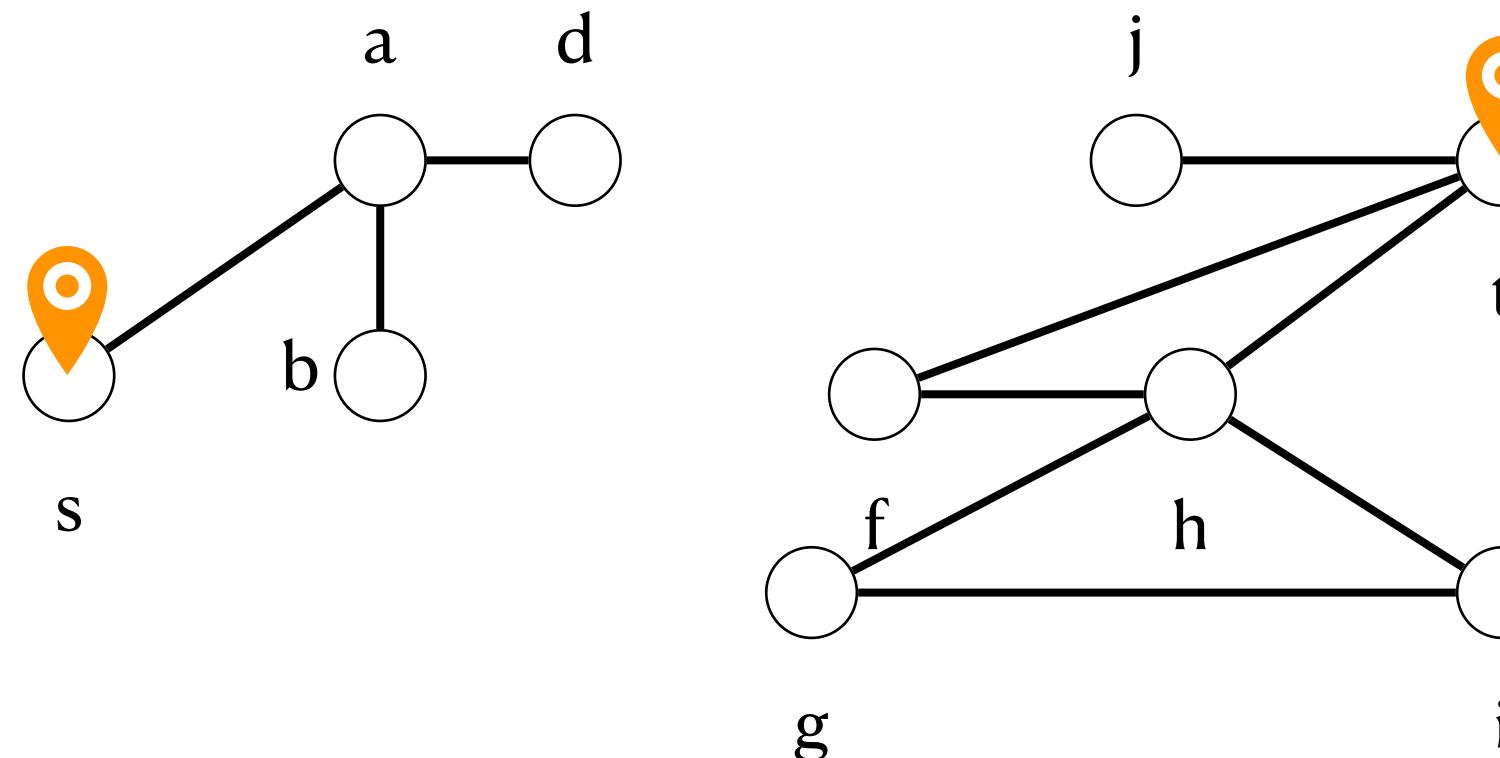
# st-Vertex Cut Discovery Problem



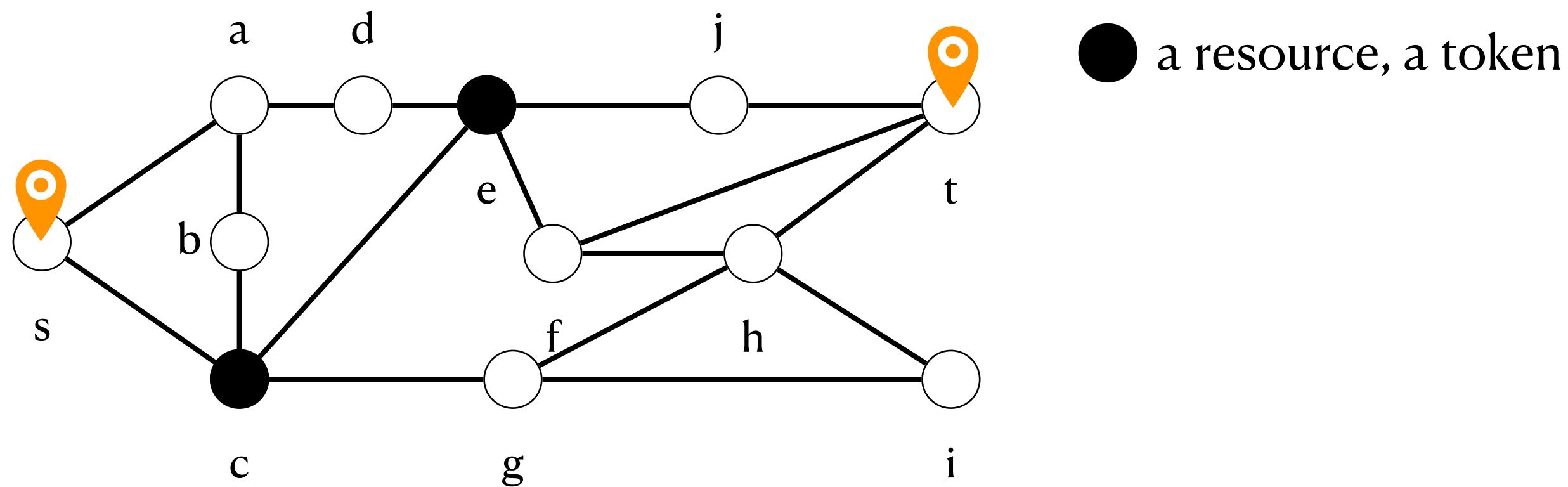
- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.



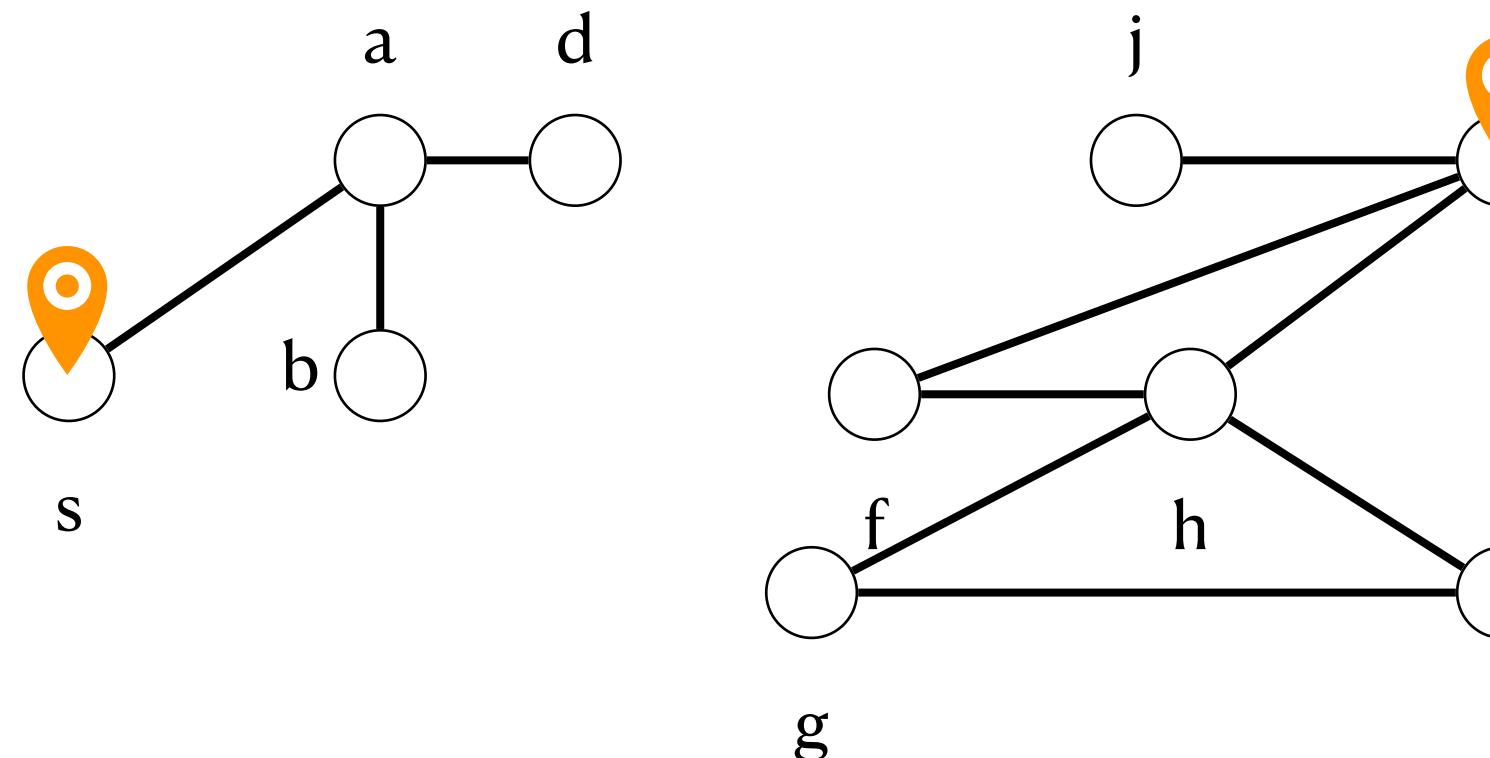
# st-Vertex Cut Discovery Problem



- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.



# st-Vertex Cut Discovery Problem

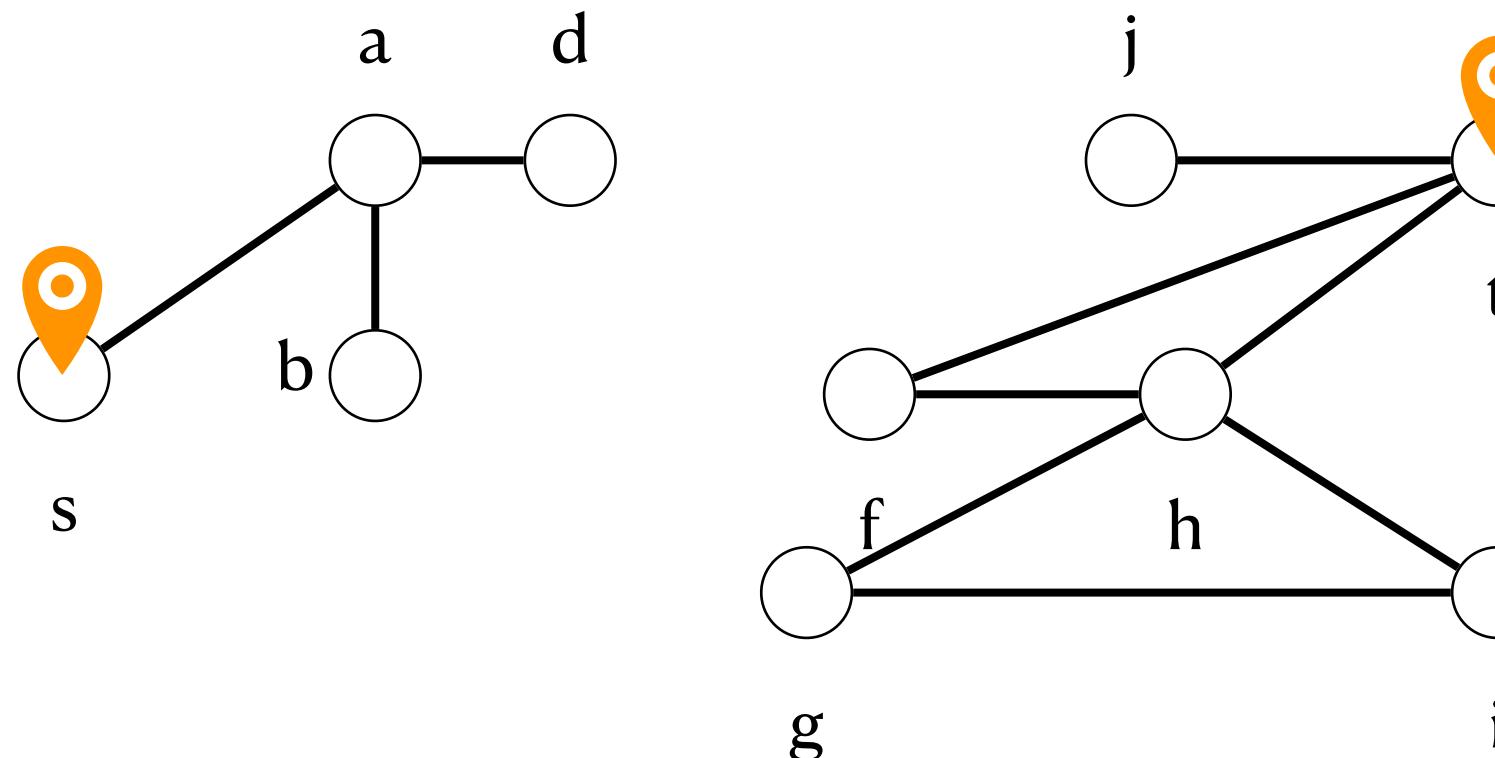


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

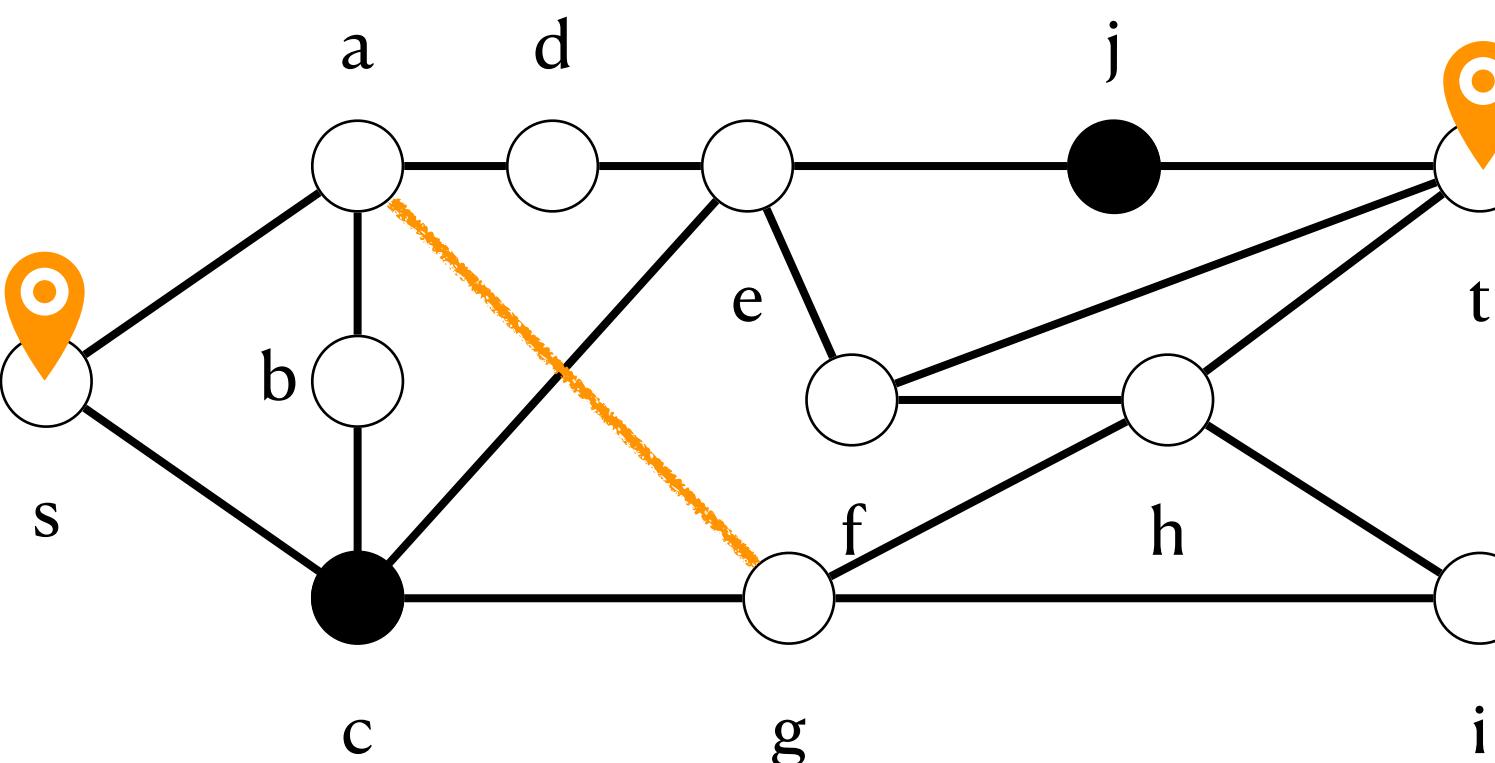


- ➌ a resource, a token
- ➍ Infeasible solution viewed as tokens on vertices.

# st-Vertex Cut Discovery Problem



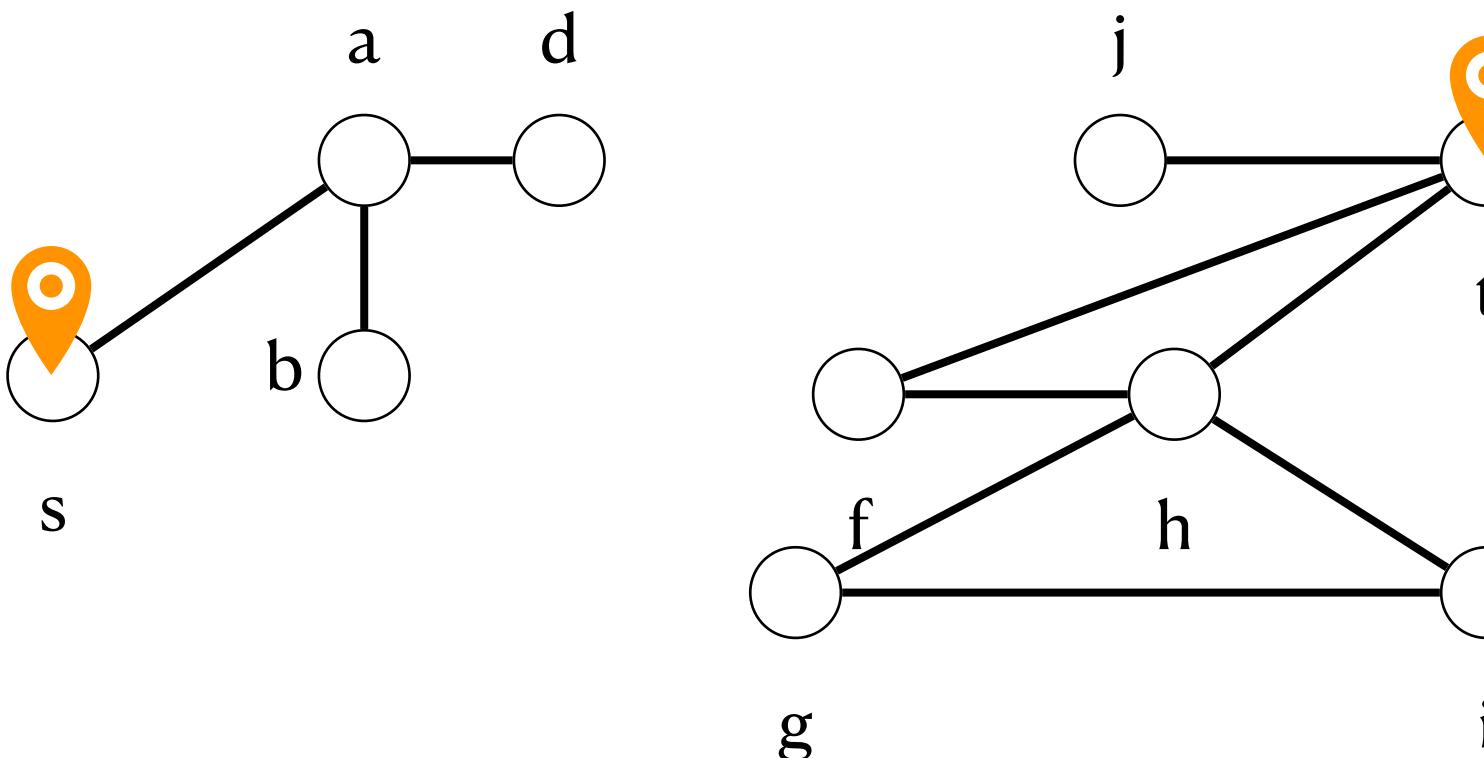
- **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.



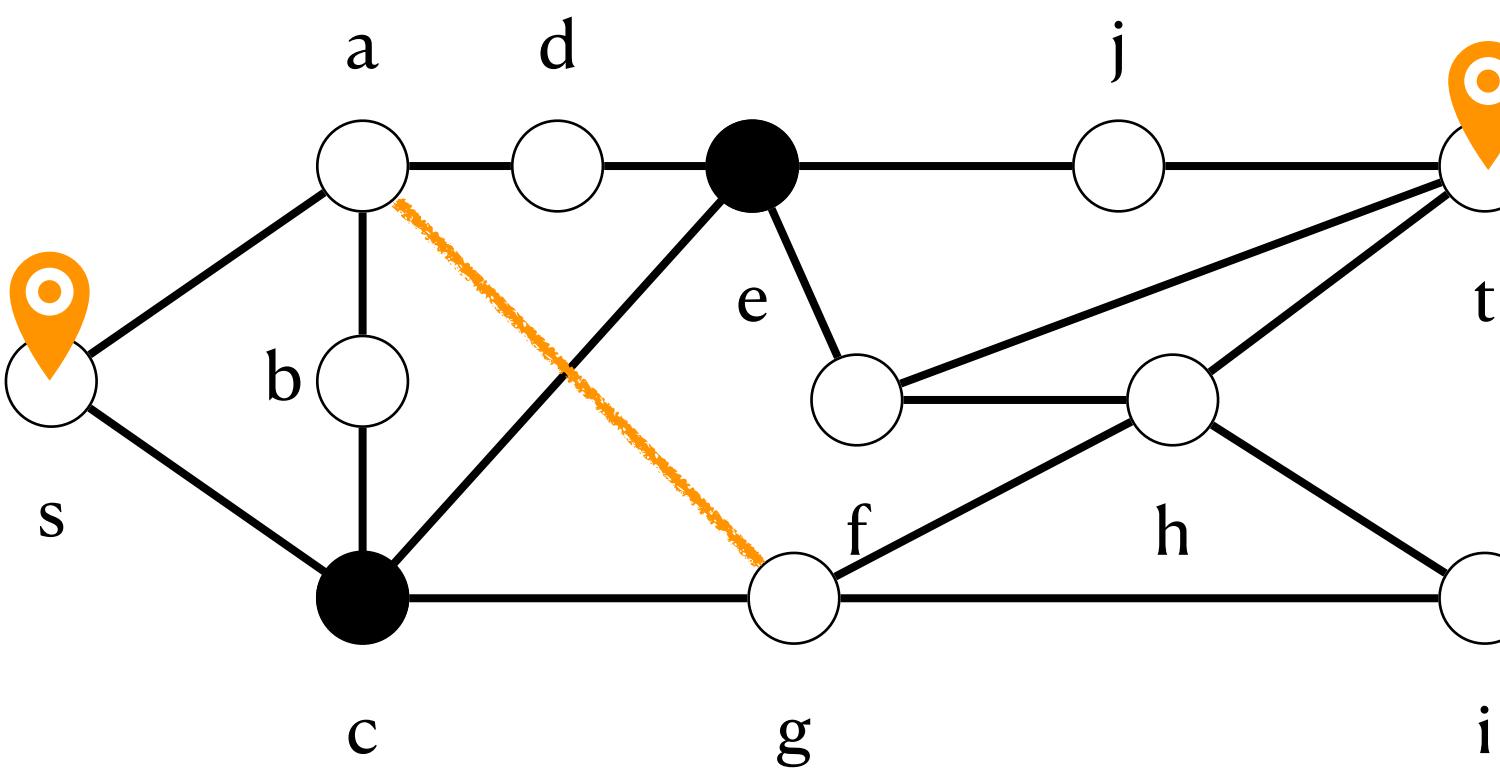
- a resource, a token

1. Infeasible solution viewed as tokens on vertices.

# st-Vertex Cut Discovery Problem

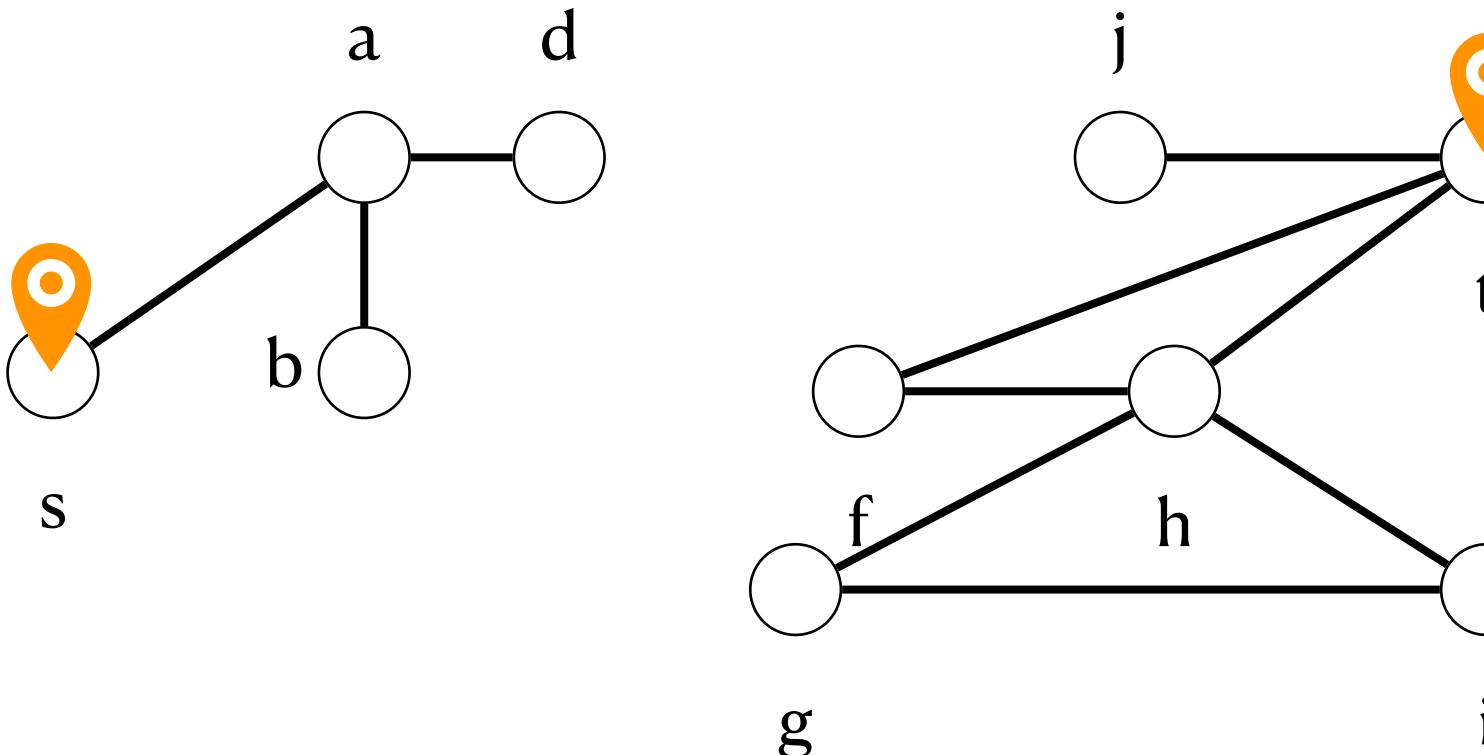


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices s and t.
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

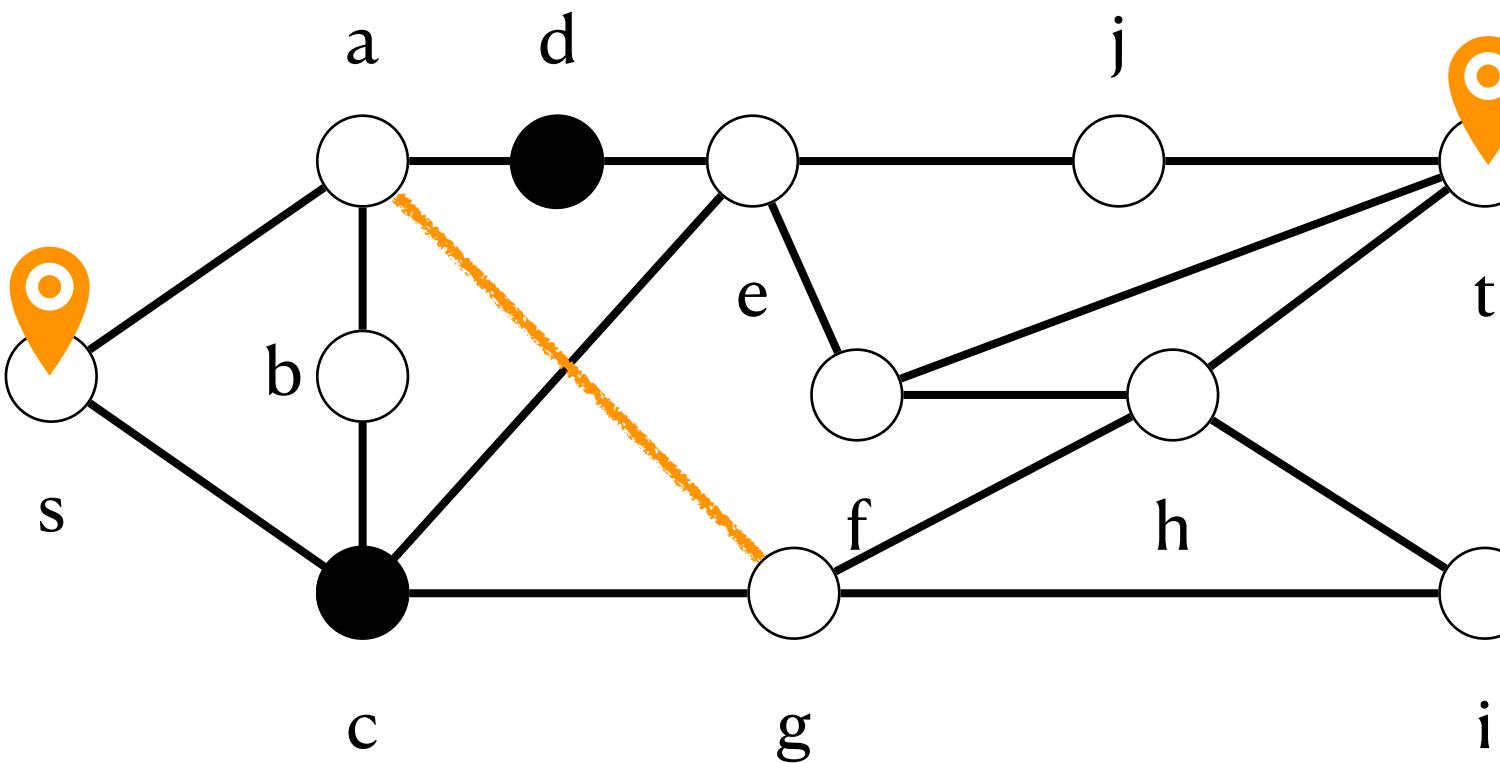


- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).

# st-Vertex Cut Discovery Problem

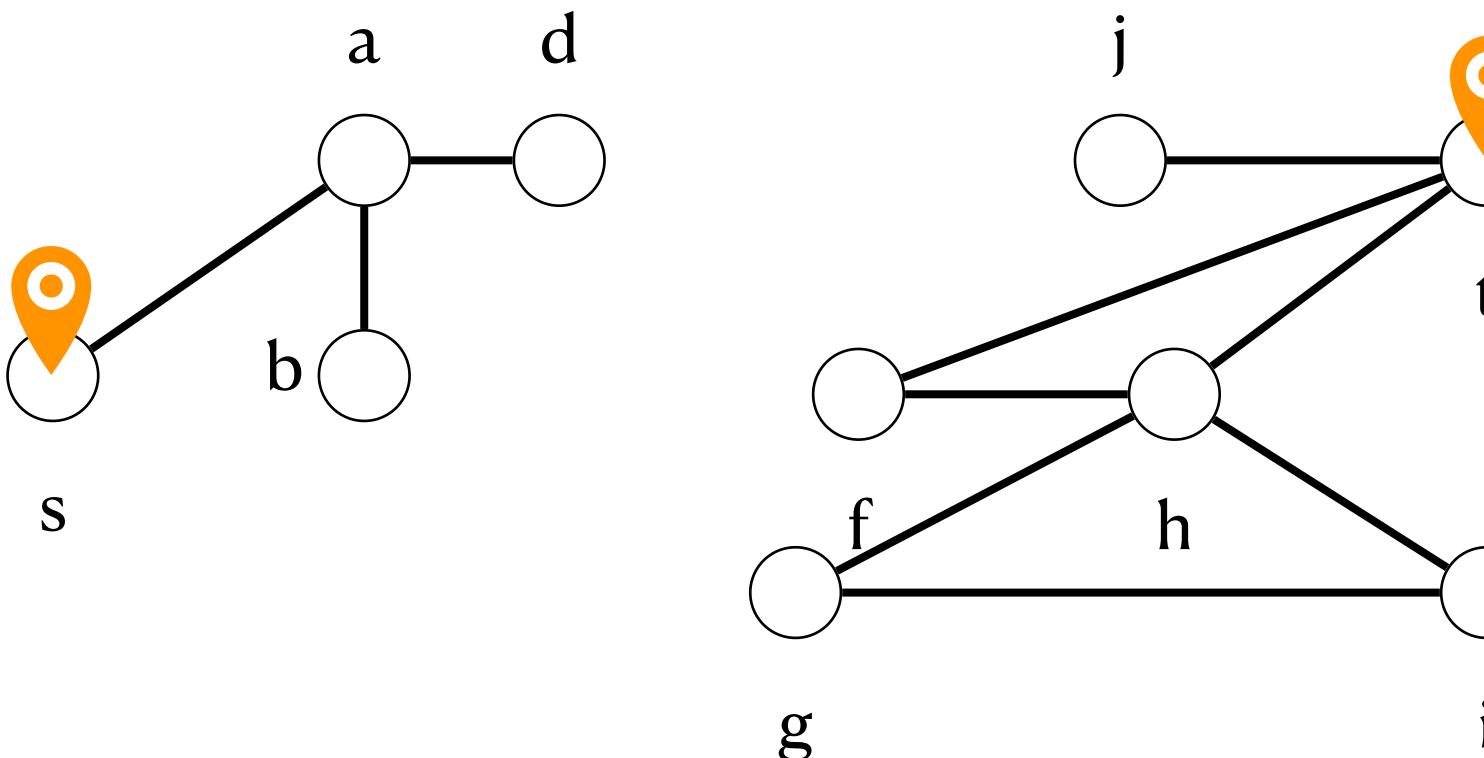


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

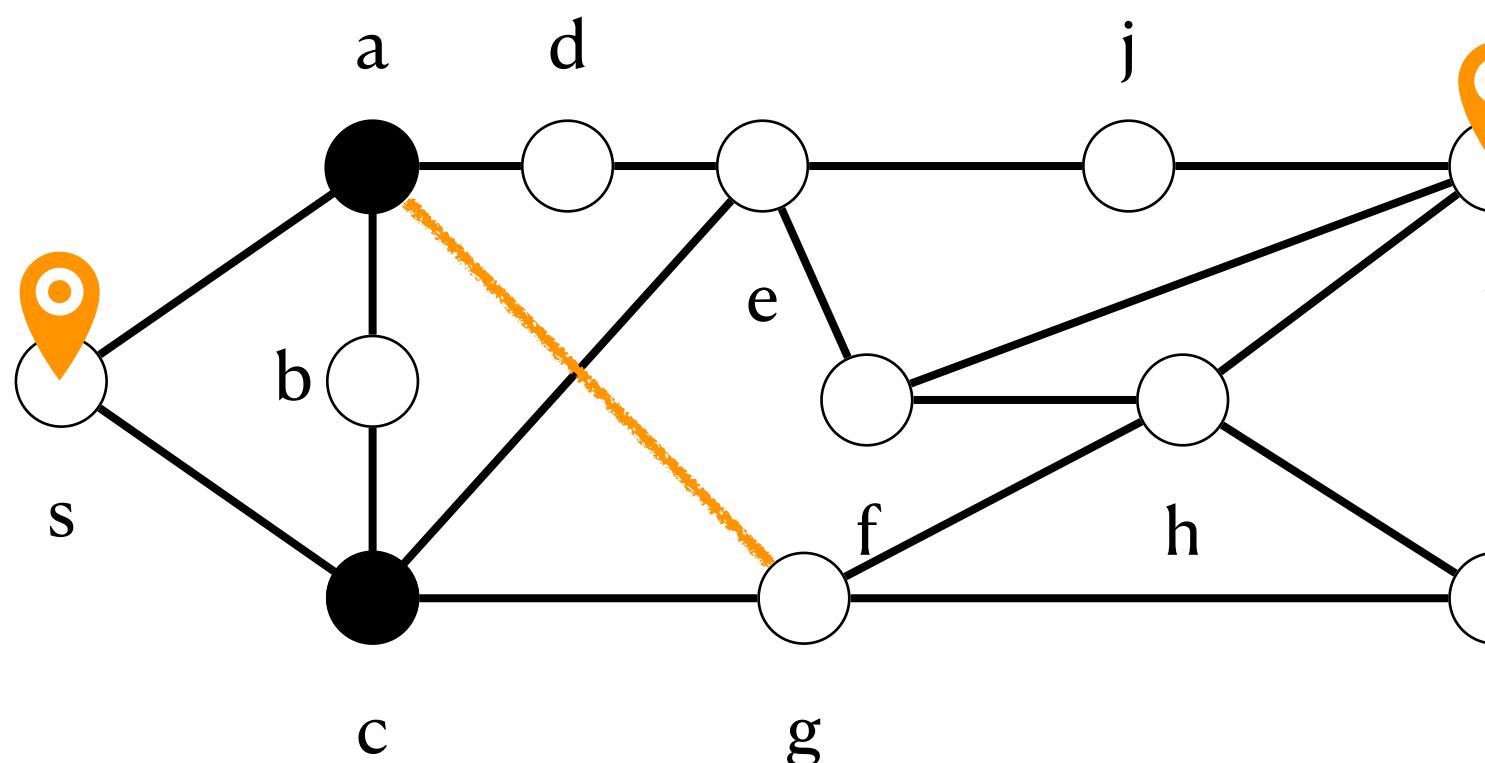


- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).

# st-Vertex Cut Discovery Problem



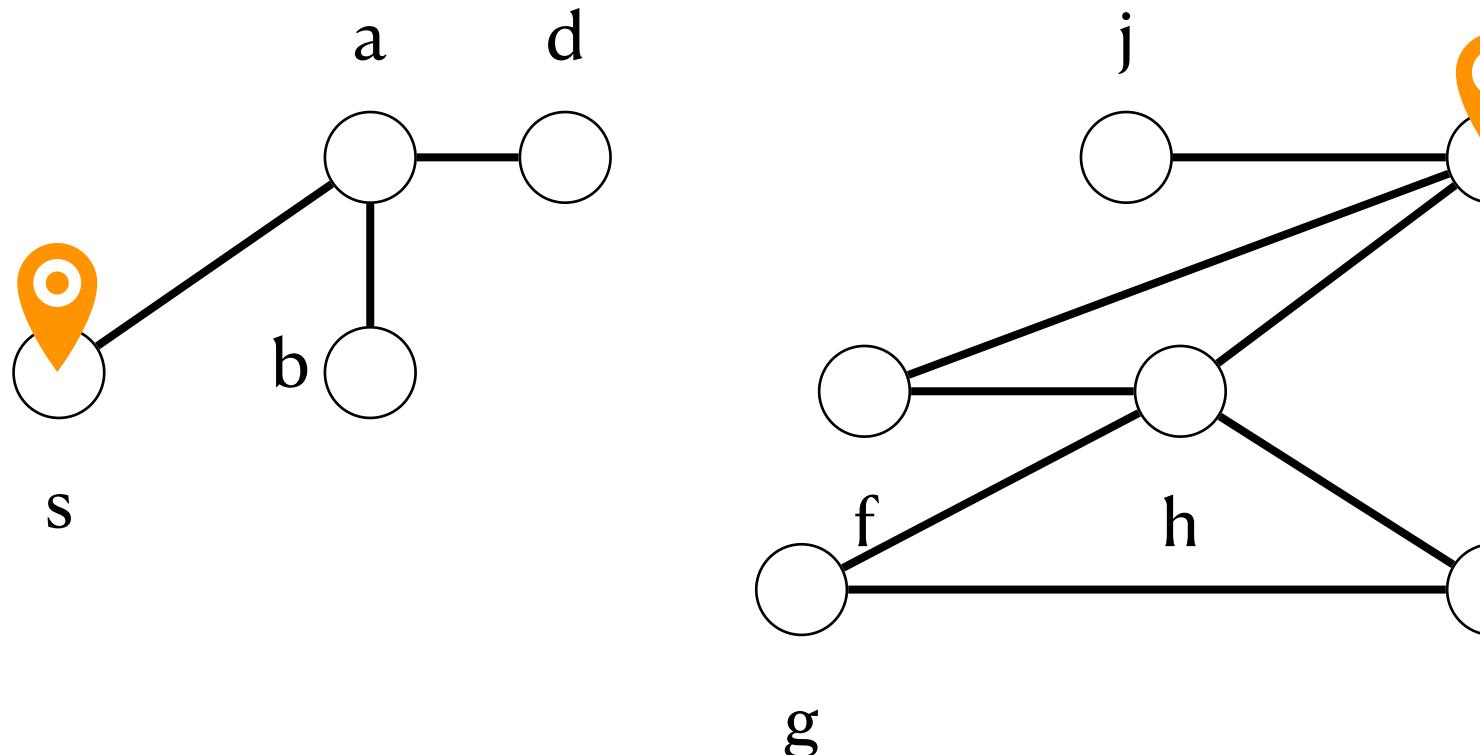
- **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.



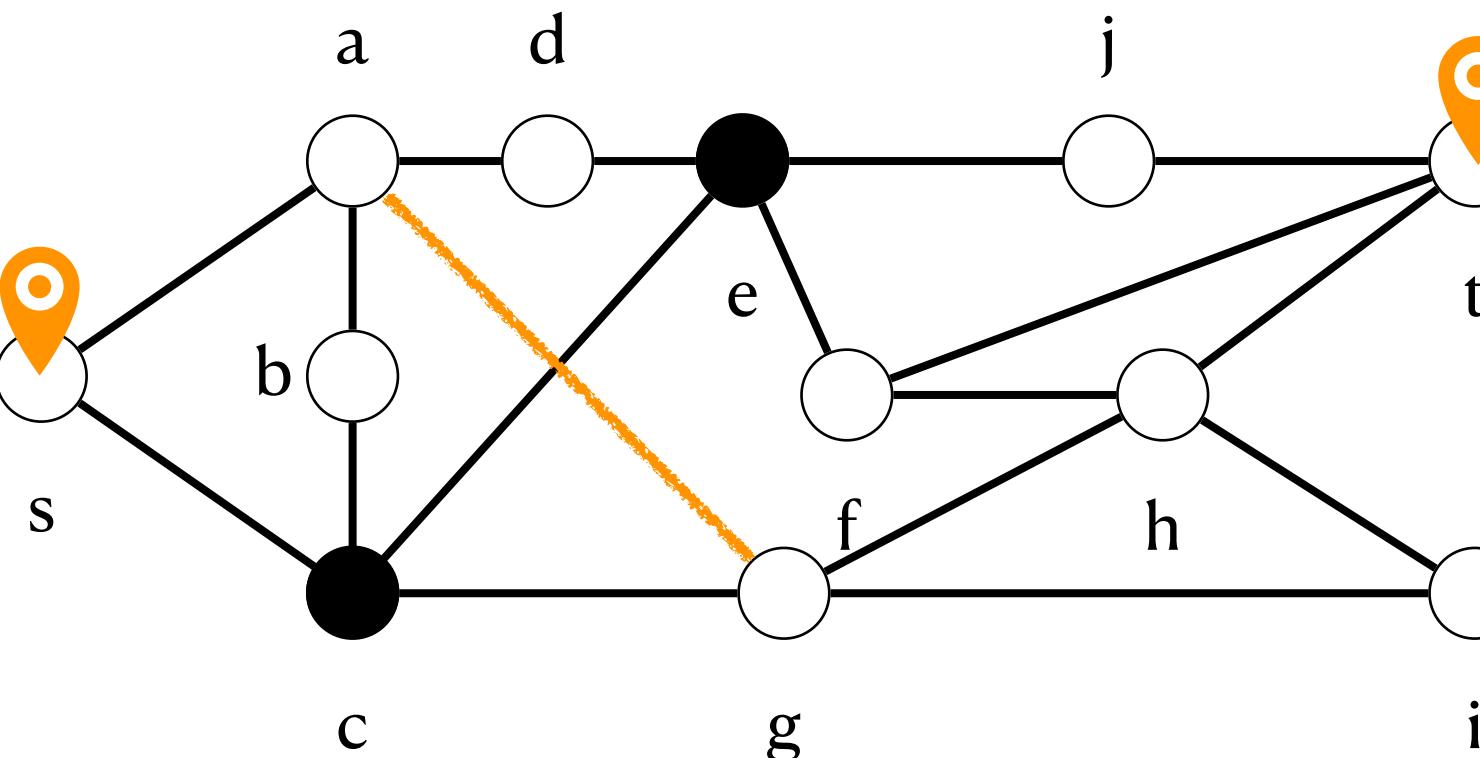
- a resource, a token

1. Infeasible solution viewed as tokens on vertices.
2. Modification Cost: total no. of *token slides* (no. of edges traversed).

# st-Vertex Cut Discovery Problem

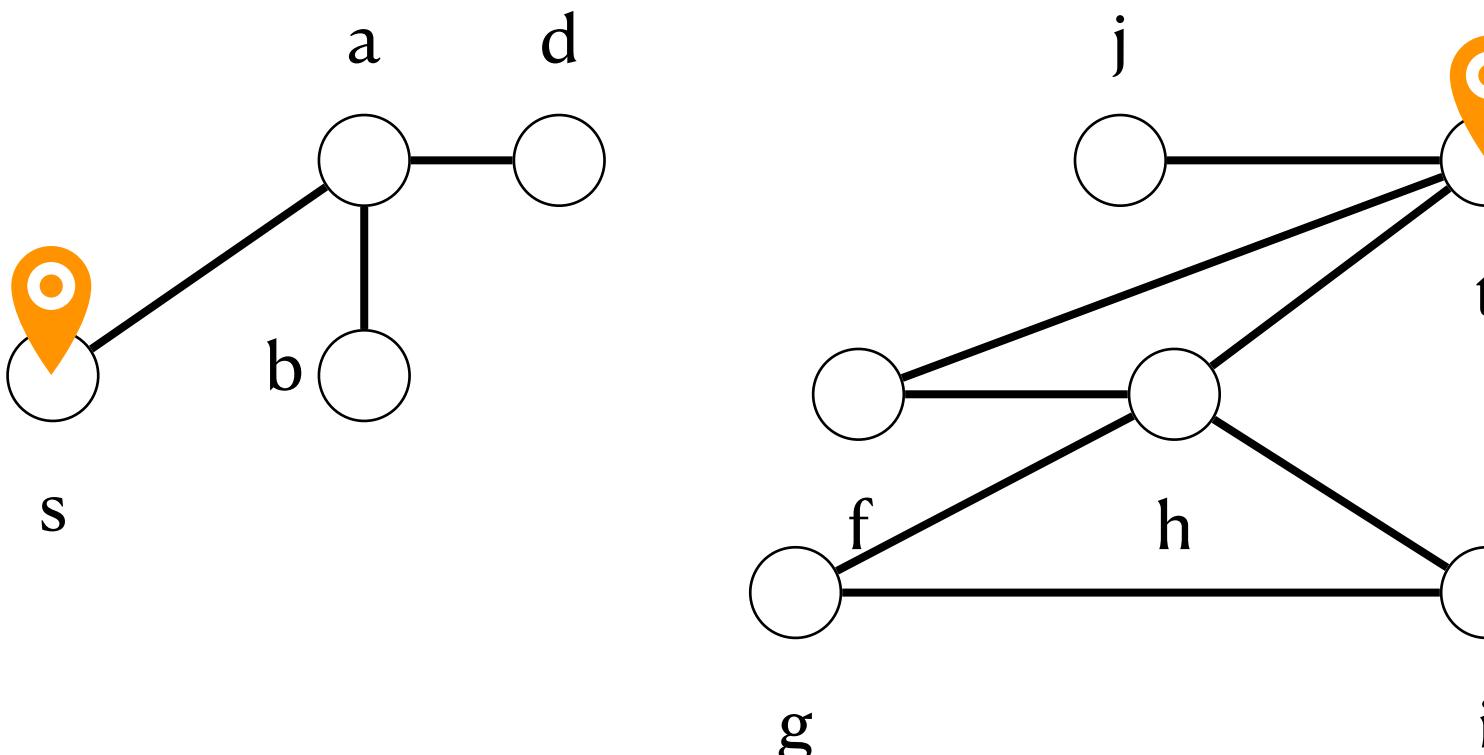


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

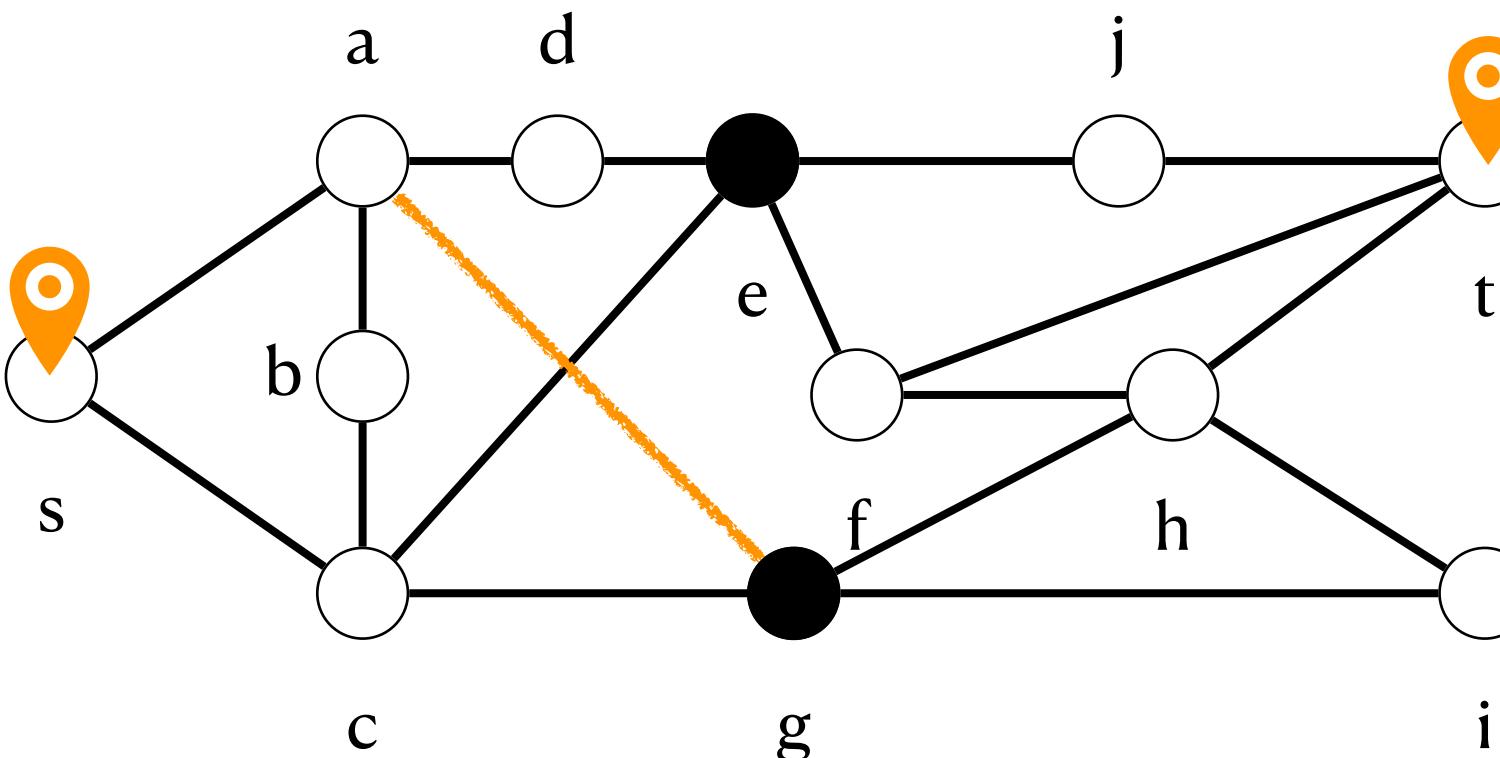


- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).

# st-Vertex Cut Discovery Problem

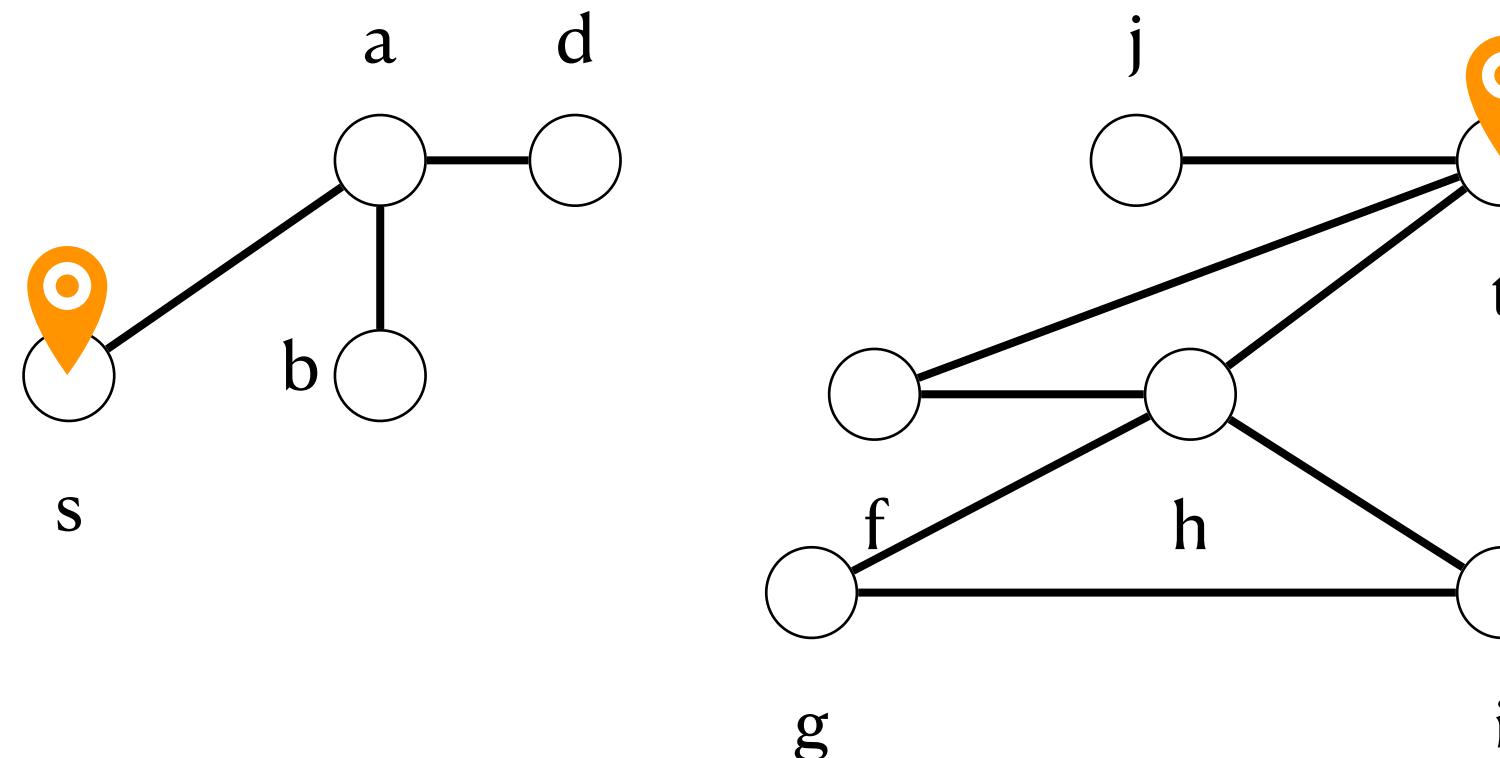


- ➊ **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- ➋ **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.

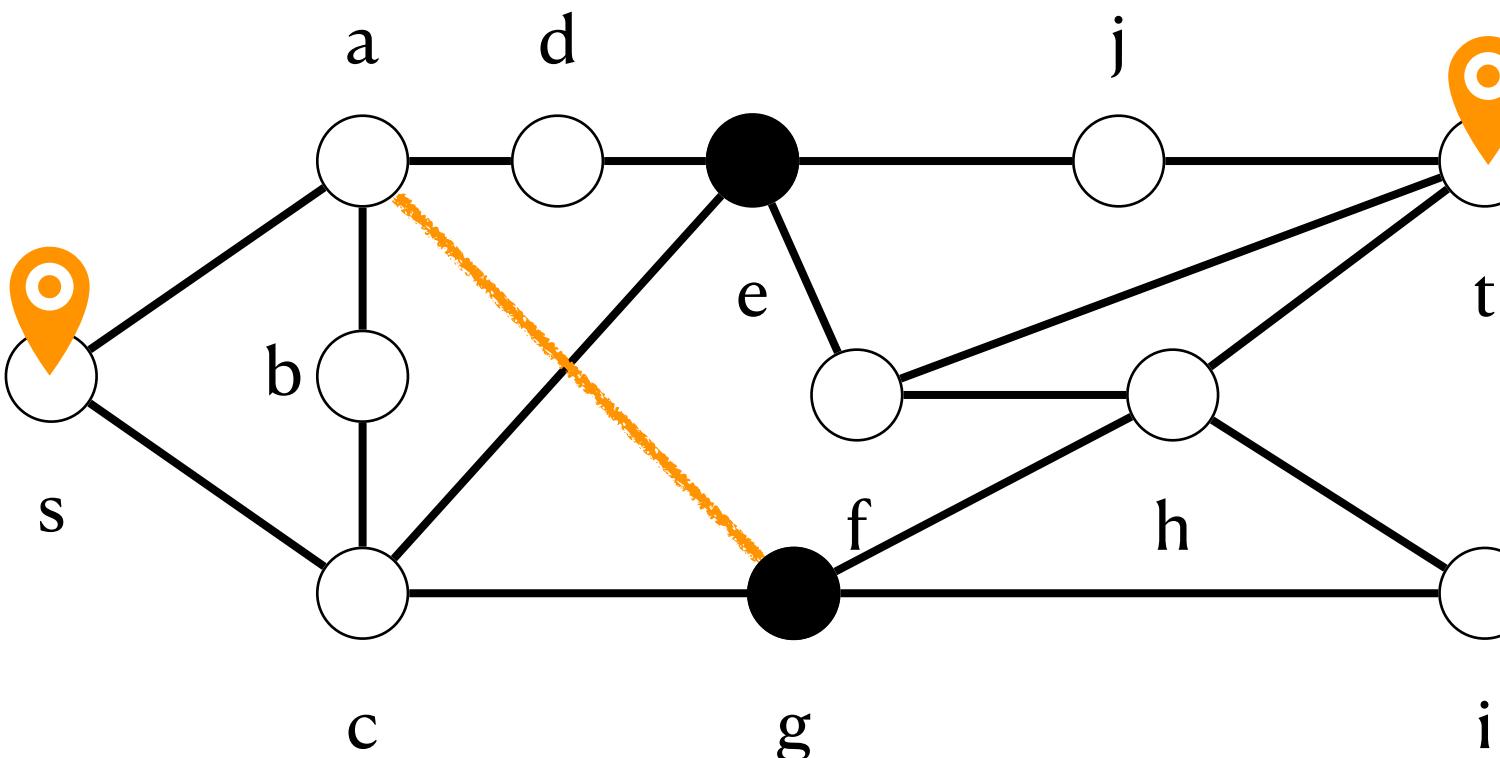


- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).
- 3. Here, we have: *Modification Cost* = 1.

# st-Vertex Cut Discovery Problem



- **Classical st-Vertex Cut Problem:** Find a vertex cut that separates two vertices  $s$  and  $t$ .
- **Classical st-Vertex Cut Algorithm:** Start with a clean slate and achieve an optimal or feasible solution efficiently.



- a resource, a token

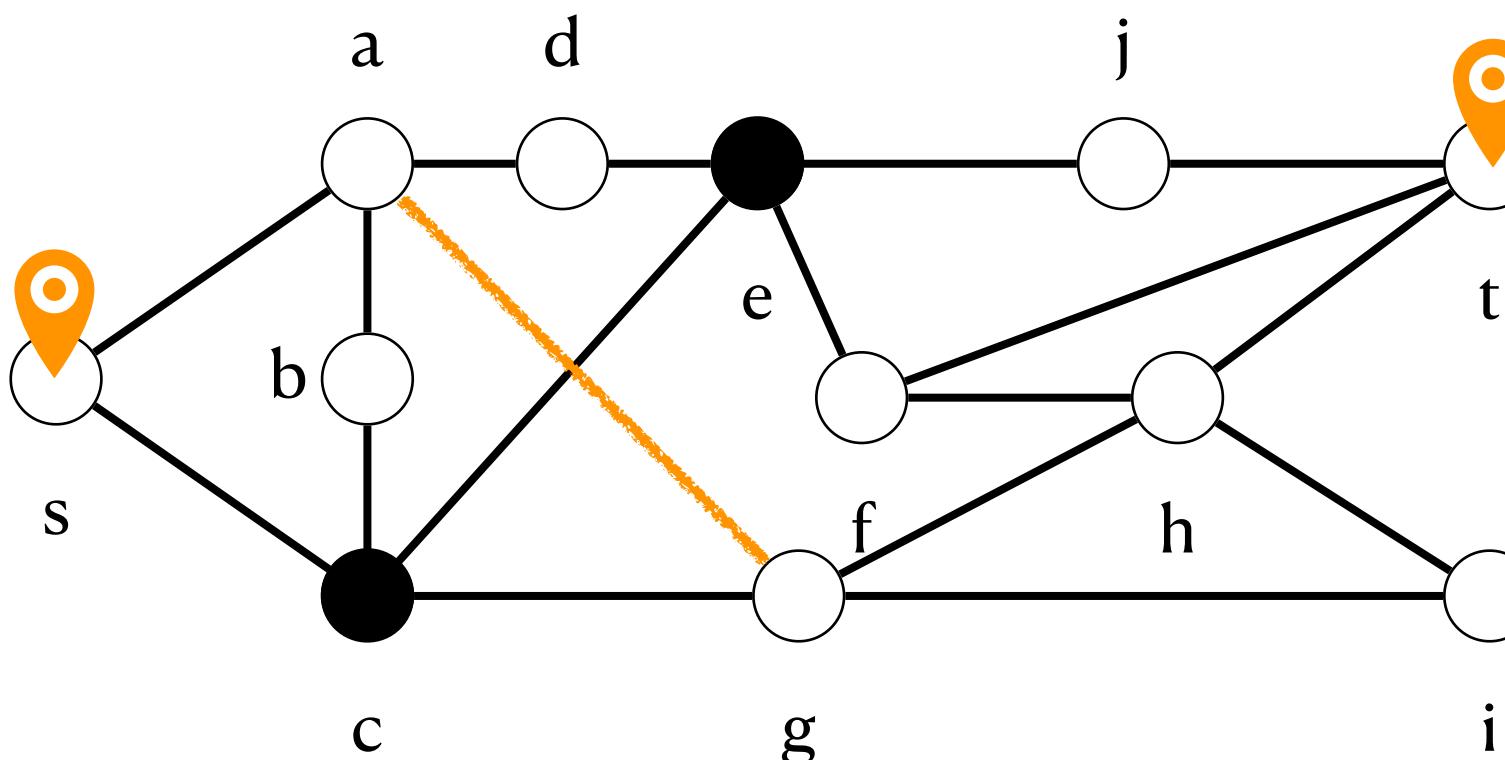
1. Infeasible solution viewed as tokens on vertices.
2. Modification Cost: total no. of *token slides* (no. of edges traversed).
3. Here, we have: *Modification Cost* = 1.

- **st-Vertex Cut Discovery Problem:** Find a vertex cut between  $s$  and  $t$  with small modification cost.

# Solution Discovery Problem

- **st-Vertex Cut Discovery Problem:** Find a vertex cut between  $s$  and  $t$  with small modification cost.

st-Vertex Cut-*discovery*:



- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).
- 3. Here, we have: *Modification Cost* = 1.

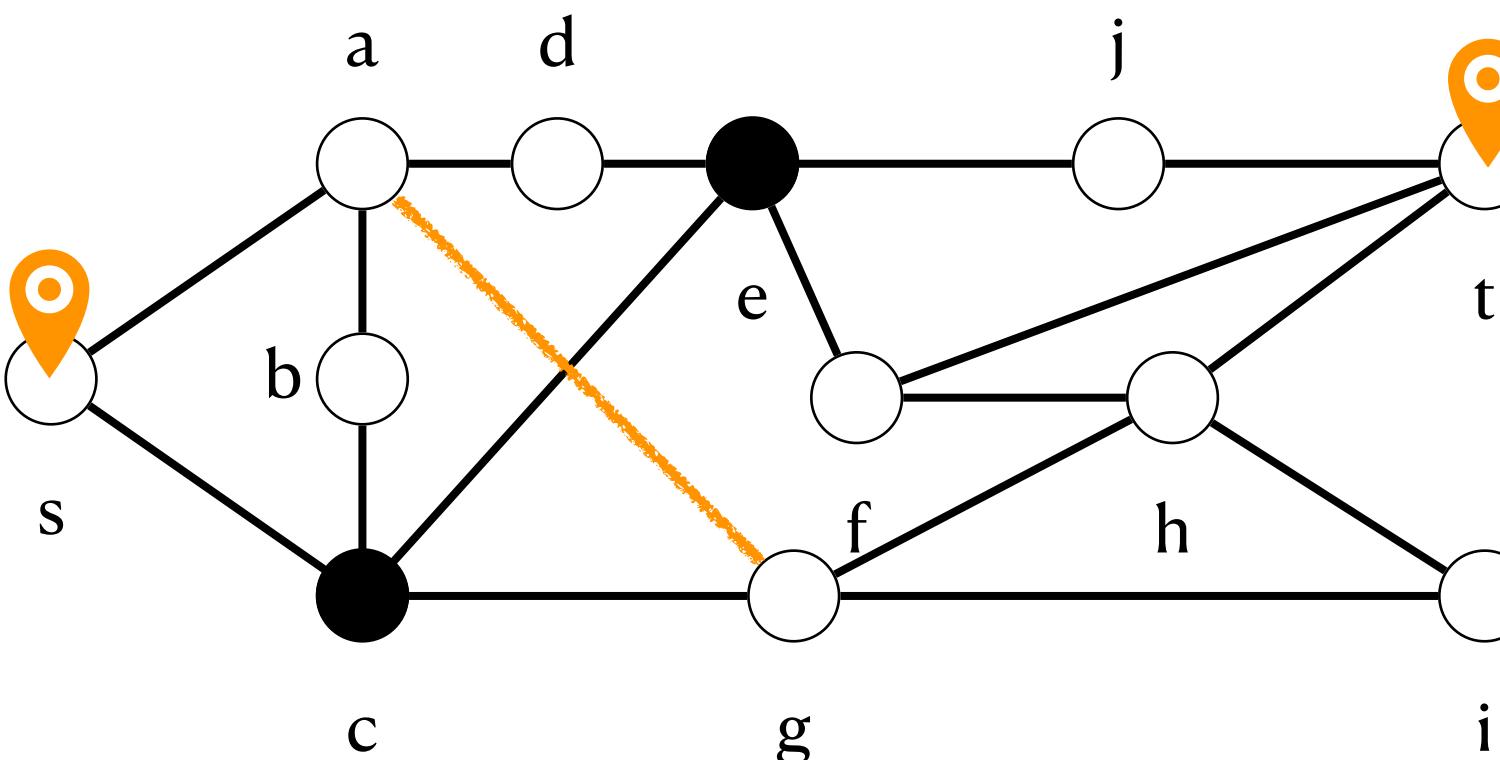
**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

# Solution Discovery Problem

- **st-Vertex Cut Discovery Problem:** Find a vertex cut between  $s$  and  $t$  with small modification cost.

st-Vertex Cut-discovery:



**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

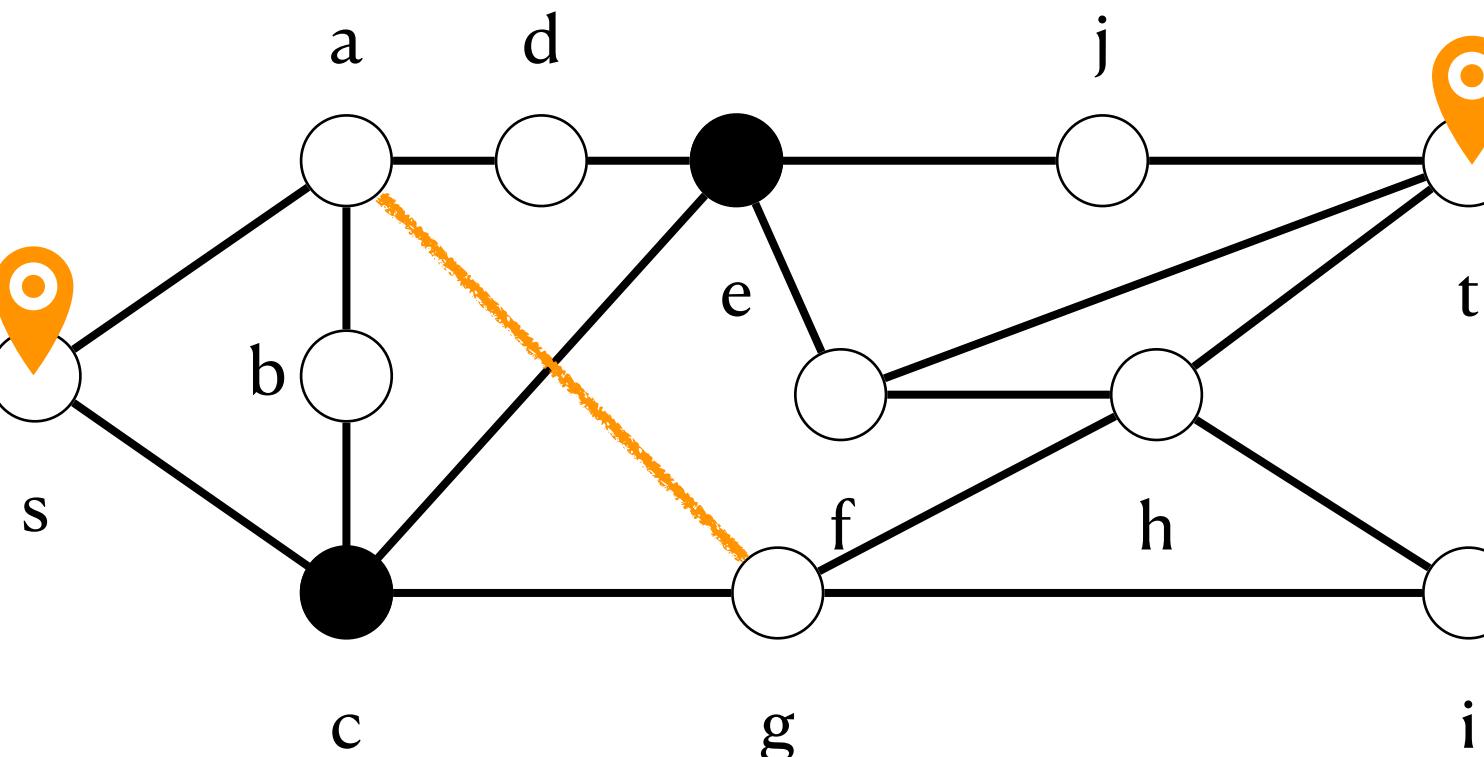
$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).
- 3. Here, we have: *Modification Cost* = 1.

# Solution Discovery Problem

## • **st-Vertex Cut Discovery Problem:** Find a vertex cut between s and t with small modification cost.



## st-Vertex Cut-*discovery*:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

## $\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

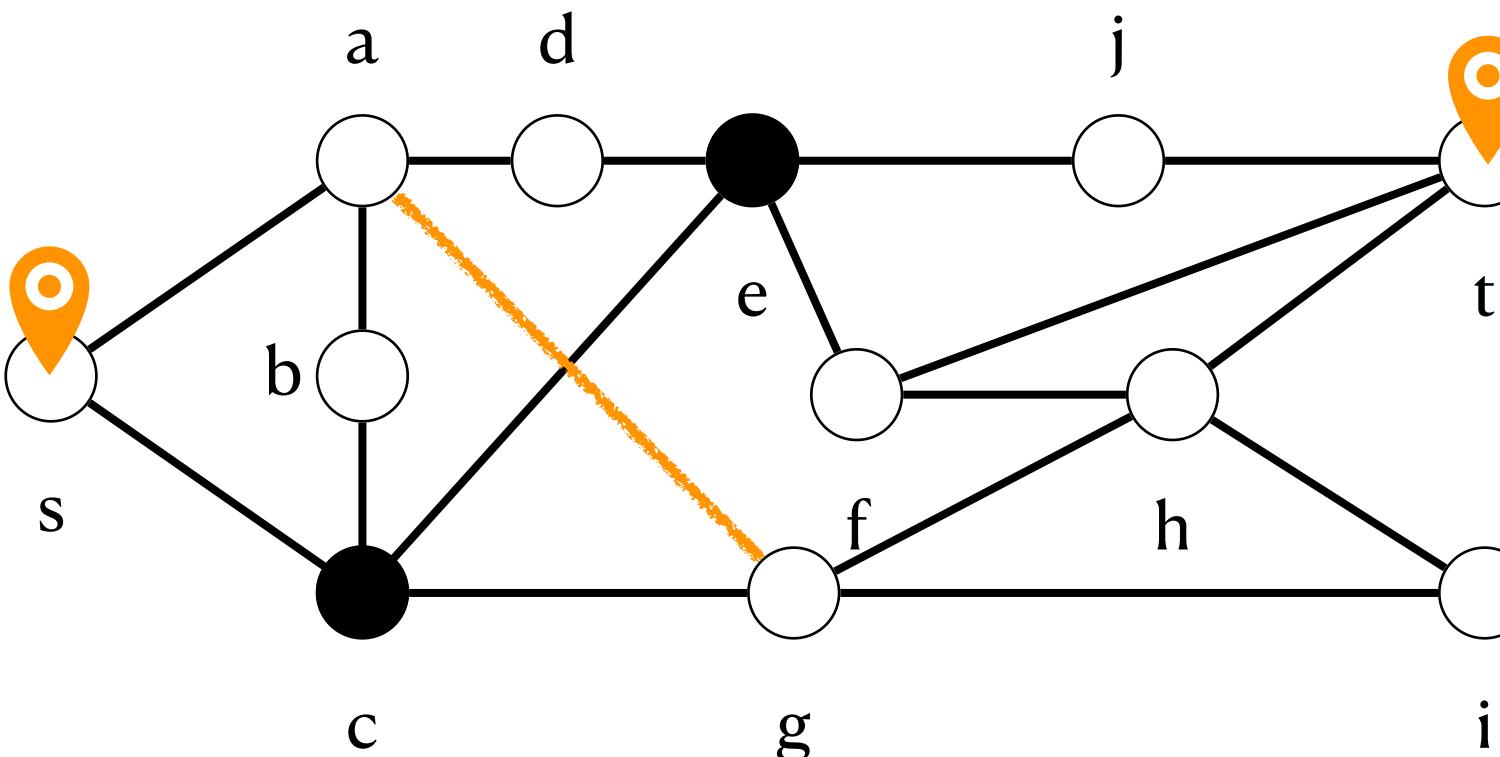
# ● a resource, a token

1. Infeasible solution viewed as tokens on vertices.
2. Modification Cost: total no. of *token slides* (no. of edges traversed).
3. Here, we have: *Modification Cost* = 1.

# Solution Discovery Problem

- **st-Vertex Cut Discovery Problem:** Find a vertex cut between  $s$  and  $t$  with small modification cost.

st-Vertex Cut-discovery:



- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).
- 3. Here, we have: *Modification Cost* = 1.

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

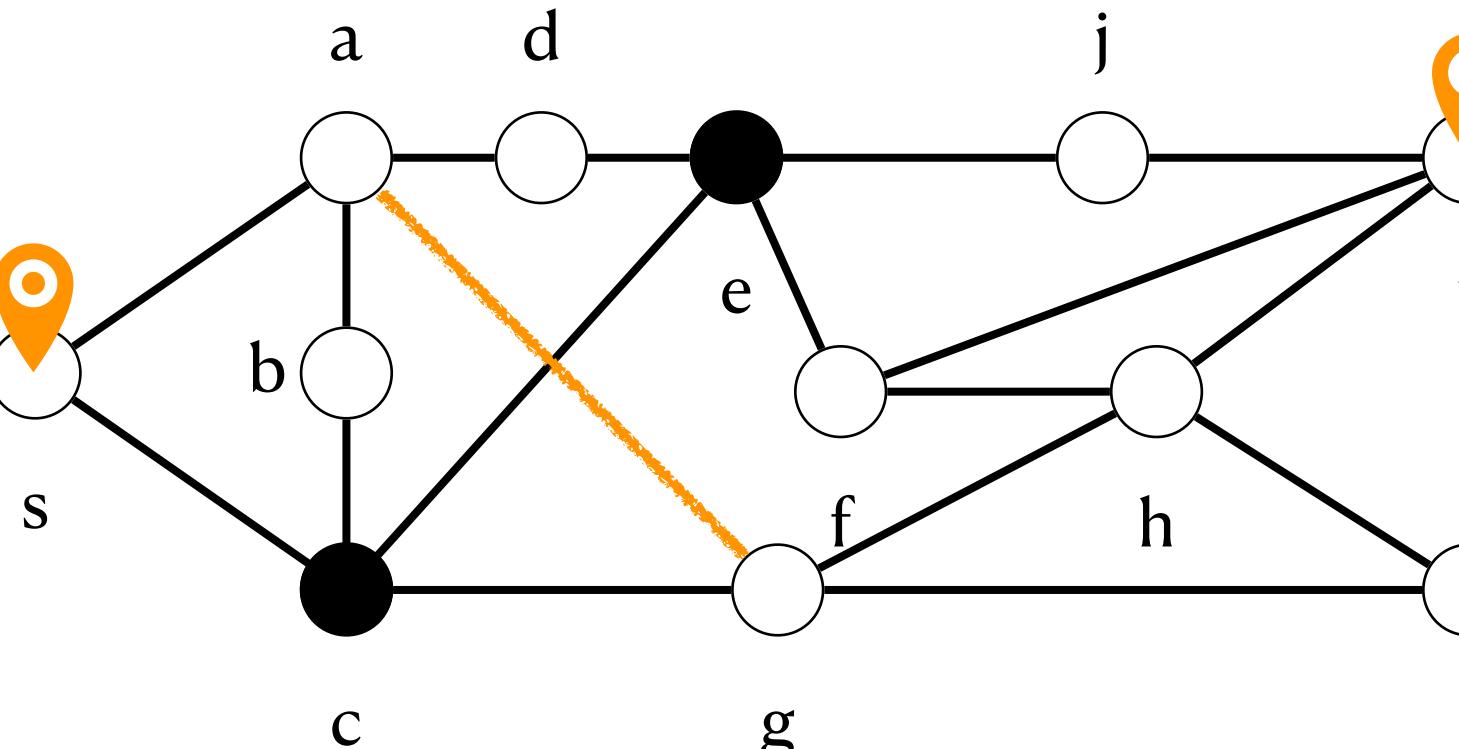
**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

**We consider for  $\Pi$ :** st-Vertex Cut, Independent Set, Vertex Cover, Dominating Set, Matching, Shortest Path

# Solution Discovery Problem

- **st-Vertex Cut Discovery Problem:** Find a vertex cut between  $s$  and  $t$  with small modification cost.



- a resource, a token
- 1. Infeasible solution viewed as tokens on vertices.
- 2. Modification Cost: total no. of *token slides* (no. of edges traversed).
- 3. Here, we have: *Modification Cost* = 1.

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

**We consider for  $\Pi$ :** st-Vertex Cut, Independent Set, Vertex Cover, Dominating Set, Matching, Shortest Path

# Solution Discovery Problem

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

# Solution Discovery Problem

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

*Solution discovery problem:*

**Input:** An instance  $I$  of a source problem  $\Pi$ , an infeasible solution  $NF$  to  $I$  under  $\Pi$ , and an integer  $b$ .

# Solution Discovery Problem

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

*Solution discovery problem:*

**Input:** An instance  $I$  of a source problem  $\Pi$ , an infeasible solution  $NF$  to  $I$  under  $\Pi$ , and an integer  $b$ .

**Output:** Compute a feasible solution  $F$  to  $I$  under  $\Pi$  such that  $F$  can be obtained from  $NF$  in at most  $b$  modification steps.

# Solution Discovery Problem

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

*Solution discovery problem:*

**Input:** An instance  $I$  of a source problem  $\Pi$ , an infeasible solution  $NF$  to  $I$  under  $\Pi$ , and an integer  $b$ .

**Output:** Compute a feasible solution  $F$  to  $I$  under  $\Pi$  such that  $F$  can be obtained from  $NF$  in at most  $b$  modification steps.

Solution Discovery problems occur frequently in the real world, for example [Siraichi et al. 2018].

# Solution Discovery Problem

st-Vertex Cut-discovery:

**Input:** A graph  $G$ , two vertices  $s, t \in V(G)$ , an infeasible st-vertex cut  $NF$ , and an integer  $b$ .

**Output:** Compute a feasible st-vertex cut  $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi$   $NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi$   $F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

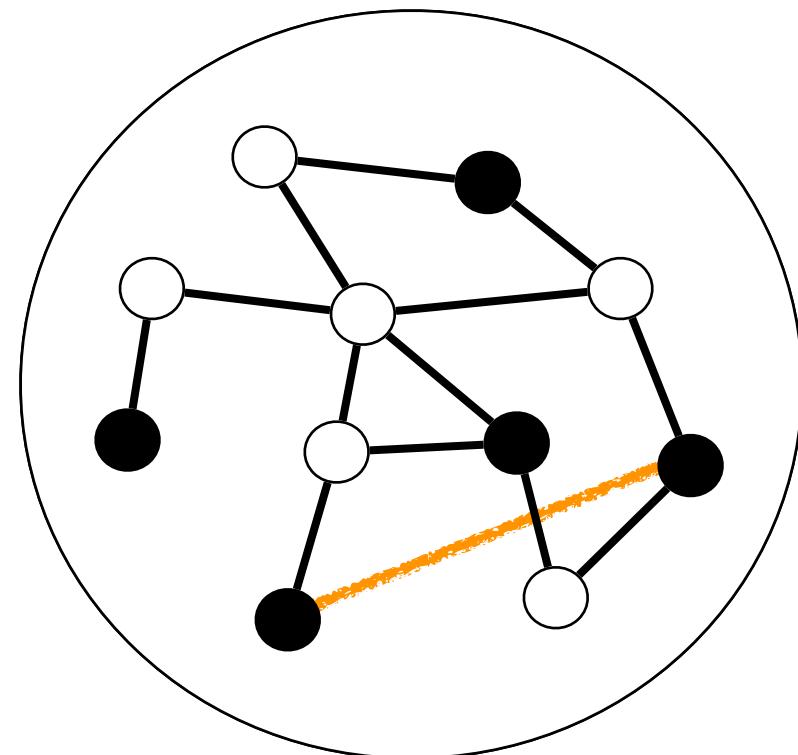
Solution Discovery problems occur frequently in the real world, for example [Siraichi et al. 2018].

# Solution Discovery Algorithm is not...

$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.



● a resource, a token

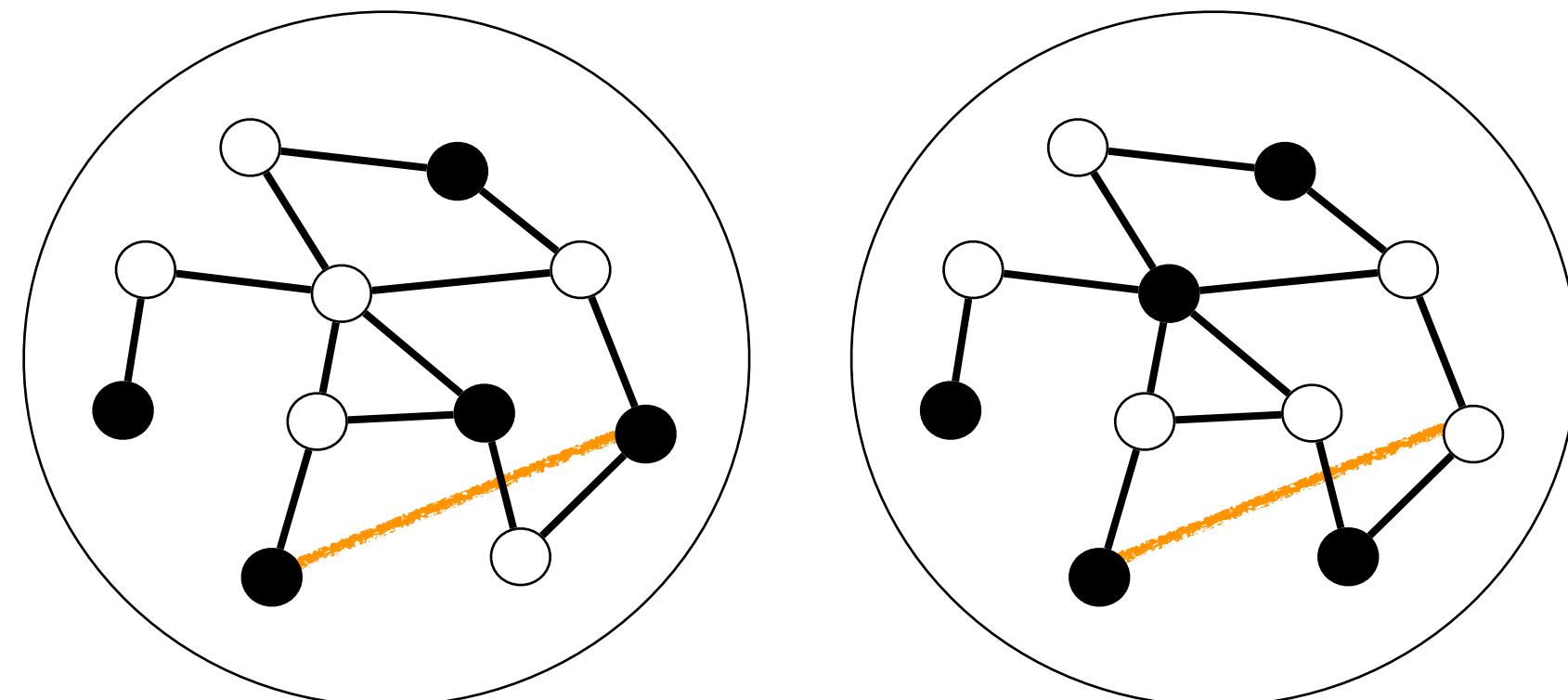
**Reoptimization algorithm:** given an Independent Set instance with a feasible solution and an orange edge to add to the instance compute a feasible solution efficiently.

# Solution Discovery Algorithm is not...

$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.



● a resource, a token

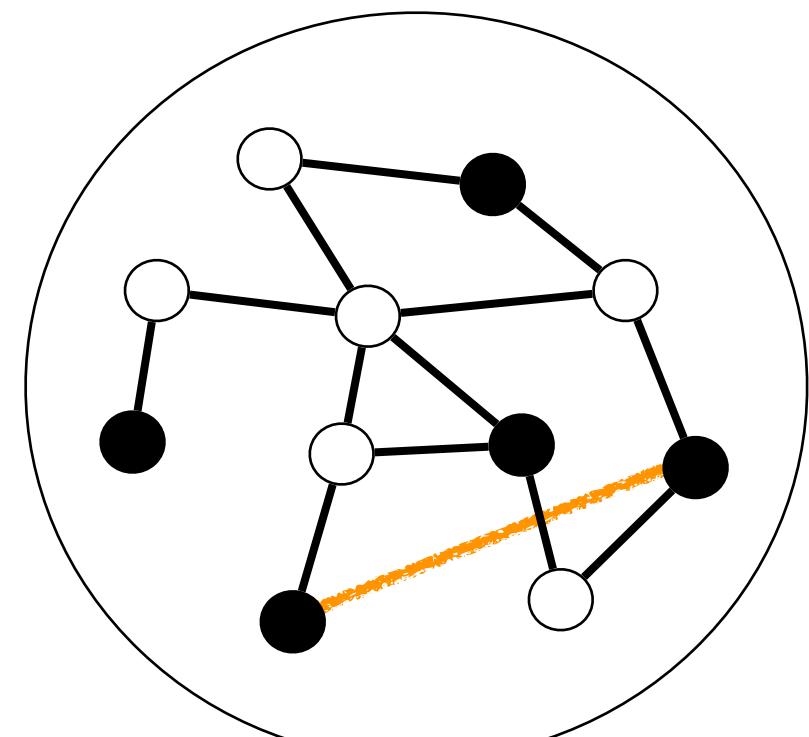
**Reoptimization algorithm:** given an Independent Set instance with a feasible solution and an orange edge to add to the instance compute a feasible solution efficiently.

# Solution Discovery Algorithm is not...

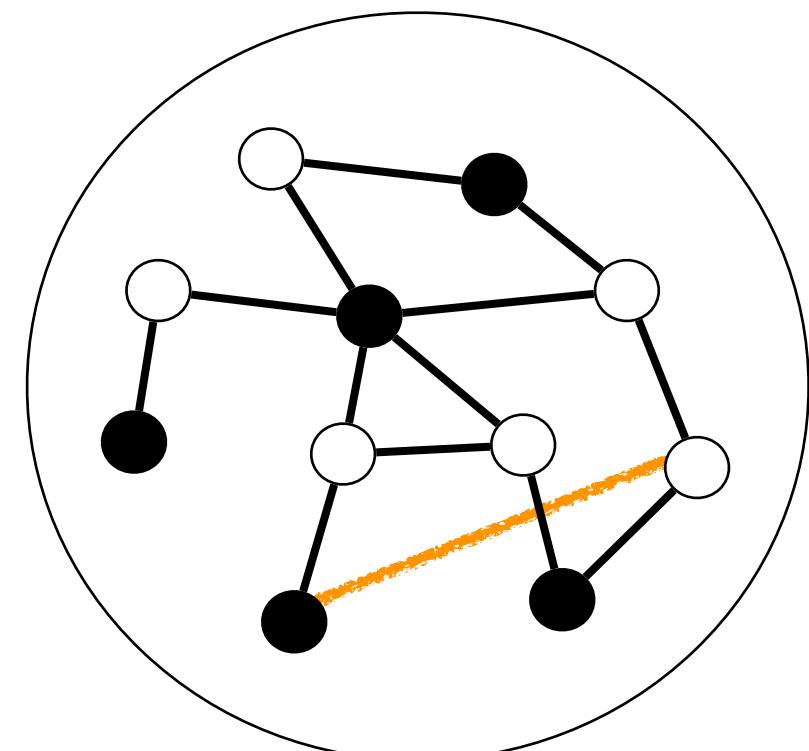
$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.



● a resource, a token



**Reoptimization algorithm:** given an Independent Set instance with a feasible solution and an orange edge to add to the instance compute a feasible solution efficiently.

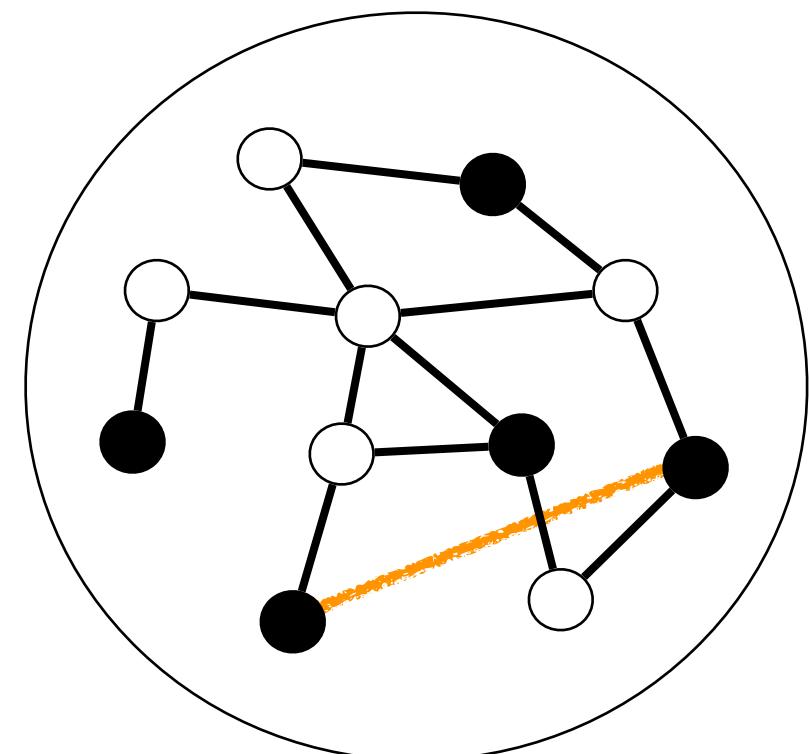
No consideration  
for modification costs

# Solution Discovery Algorithm is not...

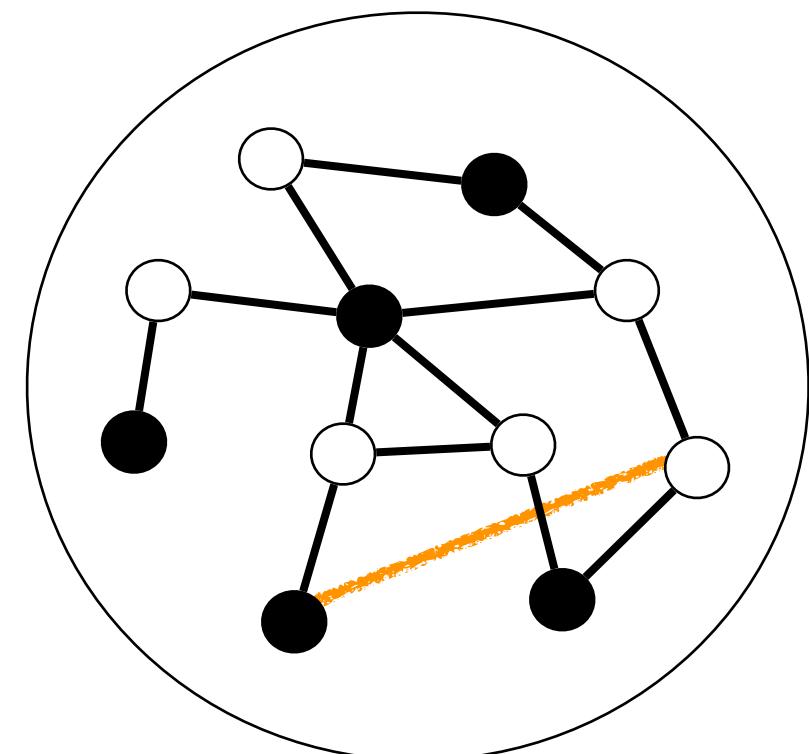
$\Pi$ -discovery:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.



● a resource, a token



**Reoptimization algorithm:** given an Independent Set instance with a feasible solution and an orange edge to add to the instance compute a feasible solution efficiently.

No consideration  
for modification costs

Solution Discovery Algorithms **are also different** from..

I. Dynamic Graph Algorithms

III. Local Search Algorithms

II. Combinatorial Reconfiguration Algorithms

# Related Work

$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

# Related Work

$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

**We consider for  $\Pi$ :** st-Vertex Cut, Independent Set, Vertex Cover, Dominating Set, Matching, Shortest Path

# Related Work

$\Pi$ -*discovery*:

**Input:** A graph  $G$ , an infeasible  $\Pi NF$ , and an integer  $b$ .

**Output:** Compute a feasible  $\Pi F$  such that  $F$  can be obtained from  $NF$  in at most  $b$  token slides.

**We consider for  $\Pi$ :** st-Vertex Cut, Independent Set, Vertex Cover, Dominating Set, Matching, Shortest Path

- ➊ [Fellows et al, 2023], [Grobler et al. 2024] show **NP-hardness** for all these solution discovery problems.

# Parameterized and Kernelization Complexities

$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

- ➊ A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .

$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

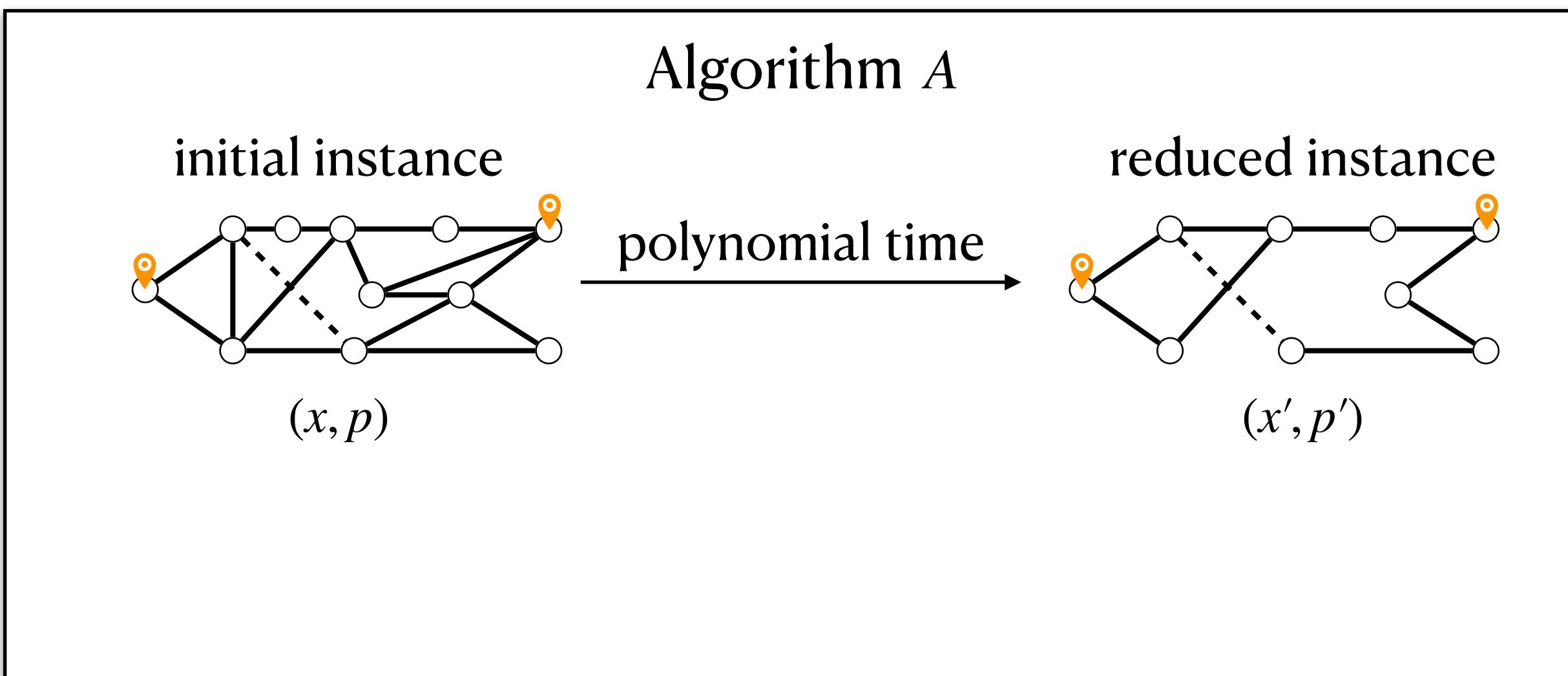
- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .
- Every parameterized problem in FPT has a *kernel* [Cai et al. 1997].

$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .
- Every parameterized problem in FPT has a *kernel* [Cai et al. 1997].

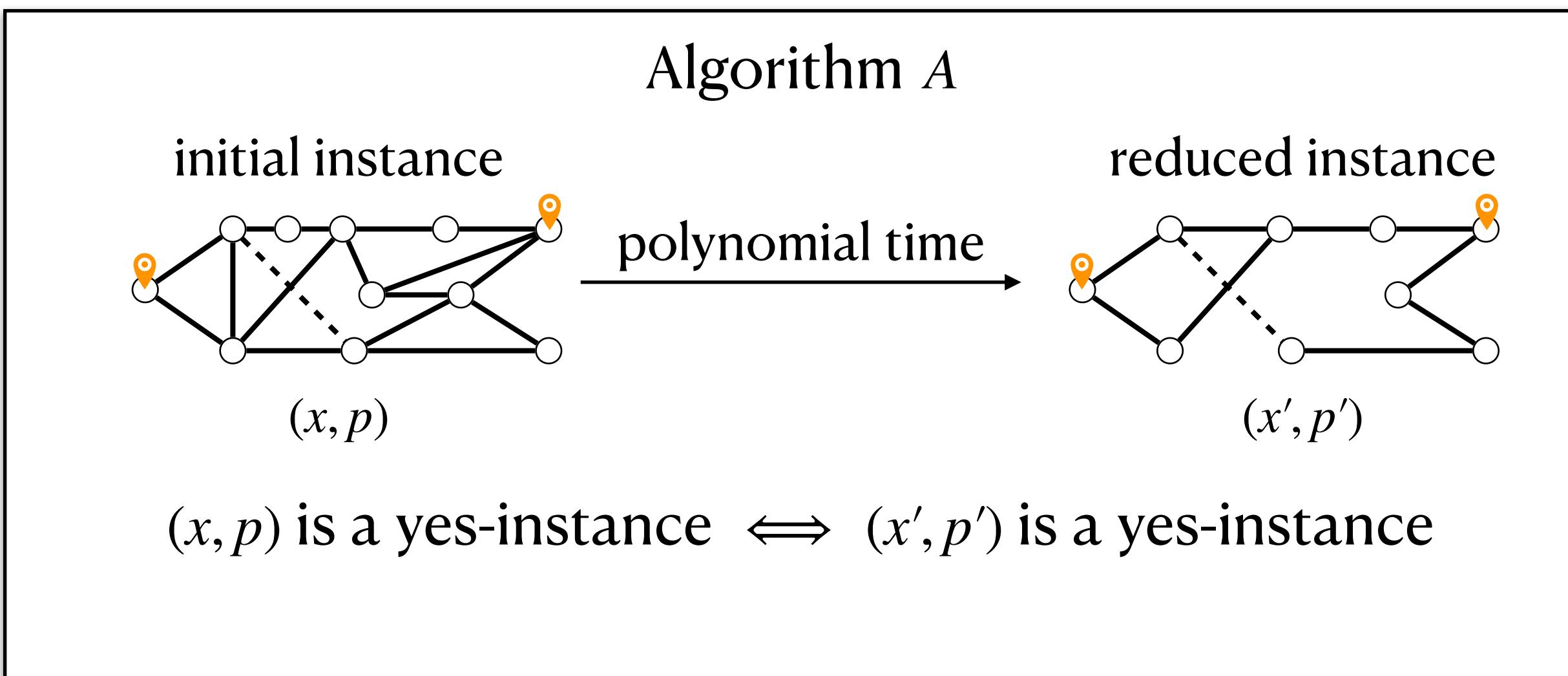


$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .
- Every parameterized problem in FPT has a *kernel* [Cai et al. 1997].

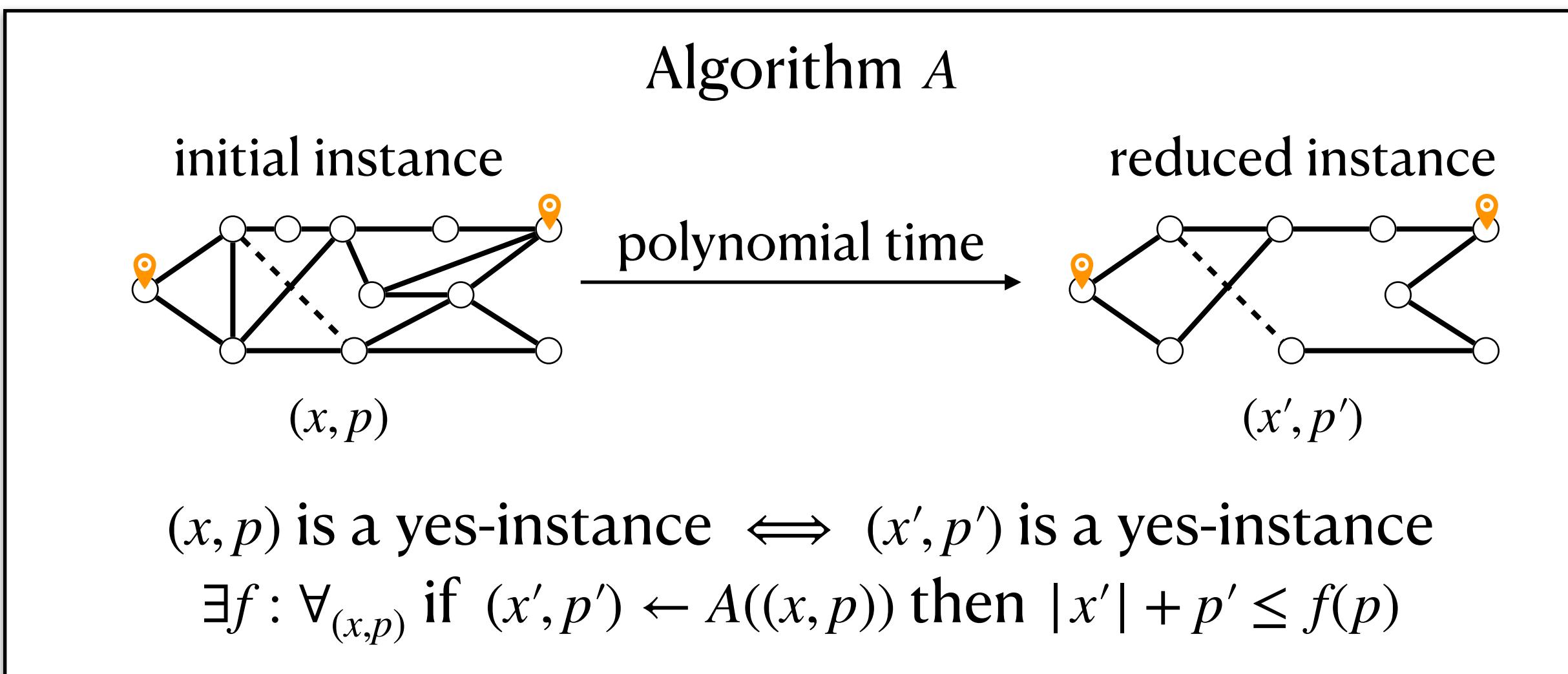


$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .
- Every parameterized problem in FPT has a *kernel* [Cai et al. 1997].

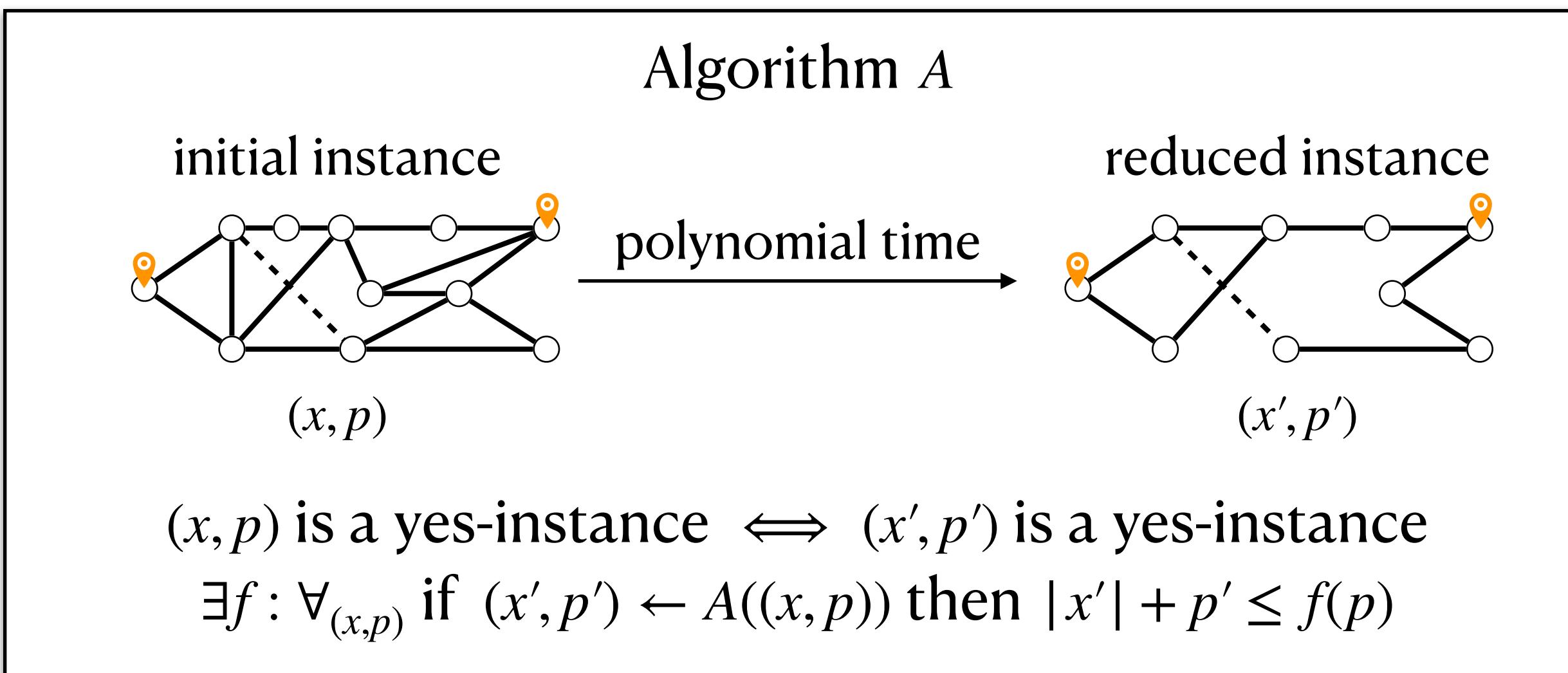


$p$ : parameter

$x$ : instance for classical problem

# Parameterized and Kernelization Complexities

- A *parameterized problem* with an algorithm that runs in  $g(p) \cdot |x|^c$  time, where  $g$  is a function, is in FPT.
- $\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \dots \subseteq \text{XNLP}$
- XNLP-hard:  $\text{W}[t]$ -hard for every  $t$ .
- Every parameterized problem in FPT has a *kernel* [Cai et al. 1997].



- Every parameterized problem in FPT has a kernel; not all are polynomial.

$p$ : parameter

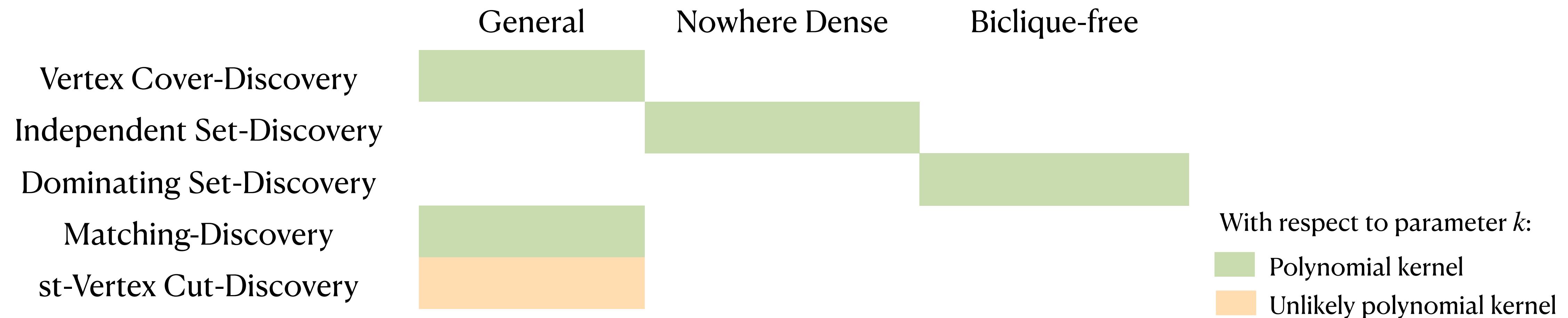
$x$ : instance for classical problem

# Our Results

- We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].

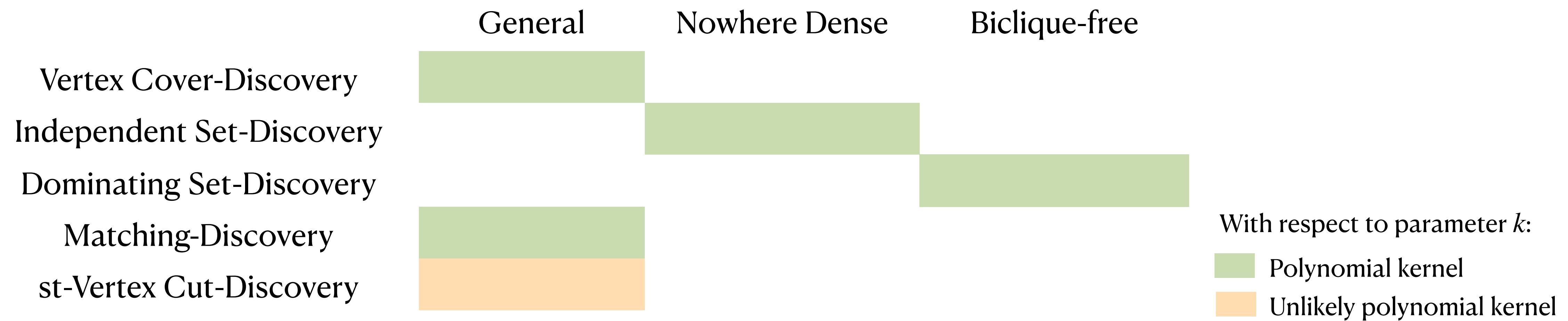
# Our Results

- We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].



# Our Results

- We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].



- Shortest Path-Discovery is unlikely to have a polynomial kernel with respect to parameter  $k + b$  on general graphs.

$p$ : parameter

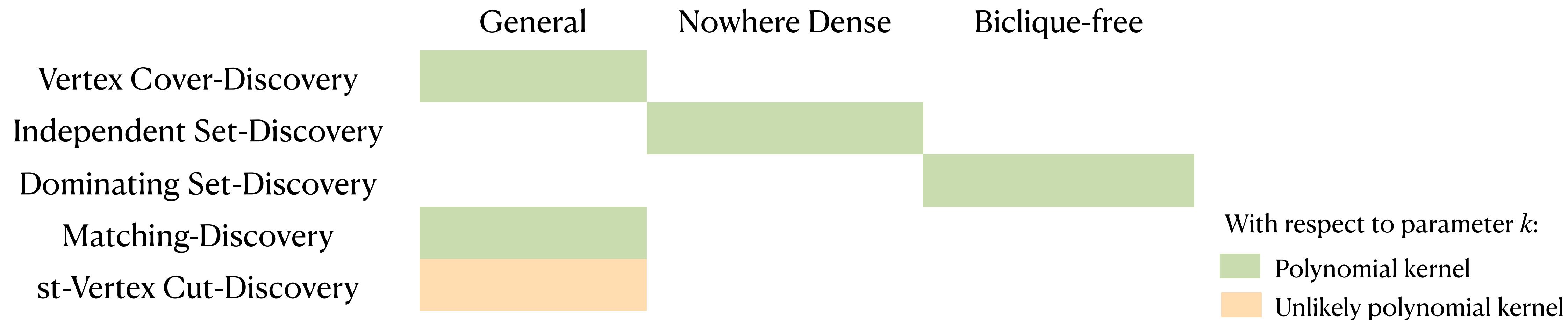
$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# Our Results

- We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].



- Shortest Path-Discovery is unlikely to have a polynomial kernel with respect to parameter  $k + b$  on general graphs.
- Vertex Cover-Discovery, Independent Set-Discovery, and Dominating Set-Discovery are unlikely to have a polynomial kernel with respect to parameter  $b + \text{pathwidth}$ , XNLP-hard with respect to parameter pathwidth, and  $W[1]$ -hard with respect to parameter feedback vertex set.

$p$ : parameter

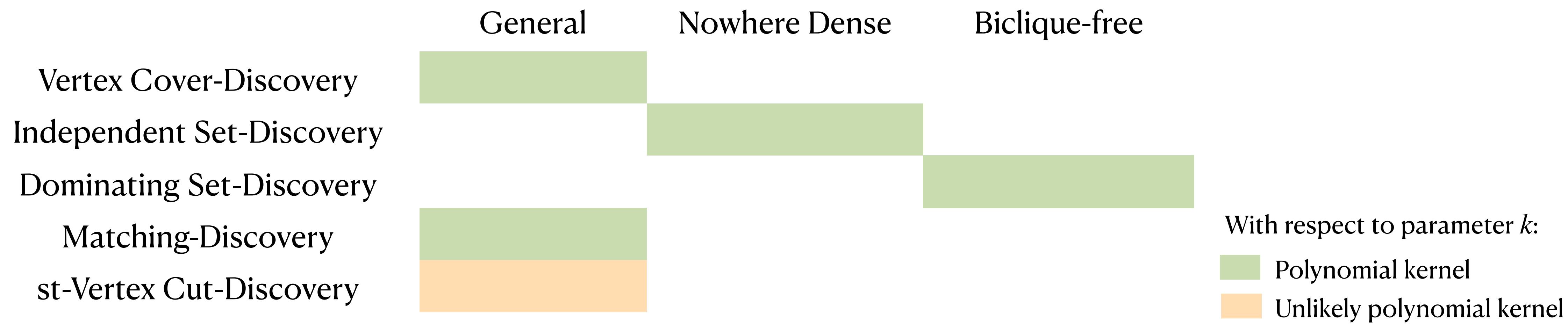
$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# Our Results

- We studied the kernelization of the considered problems, unlike [Fellows et al, 2023] and [Grobler et al. 2024].



- Shortest Path-Discovery is unlikely to have a polynomial kernel with respect to parameter  $k + b$  on general graphs.
- Vertex Cover-Discovery, Independent Set-Discovery, and Dominating Set-Discovery are unlikely to have a polynomial kernel with respect to parameter  $b + \text{pathwidth}$ , **XNLP-hard with respect to parameter pathwidth, and  $W[1]$ -hard with respect to parameter feedback vertex set.**

$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].

$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

*Rainbow Matching*: NP-hard [Le and Pfender, 2012].

$p$ : parameter

$x$ : instance for classical problem

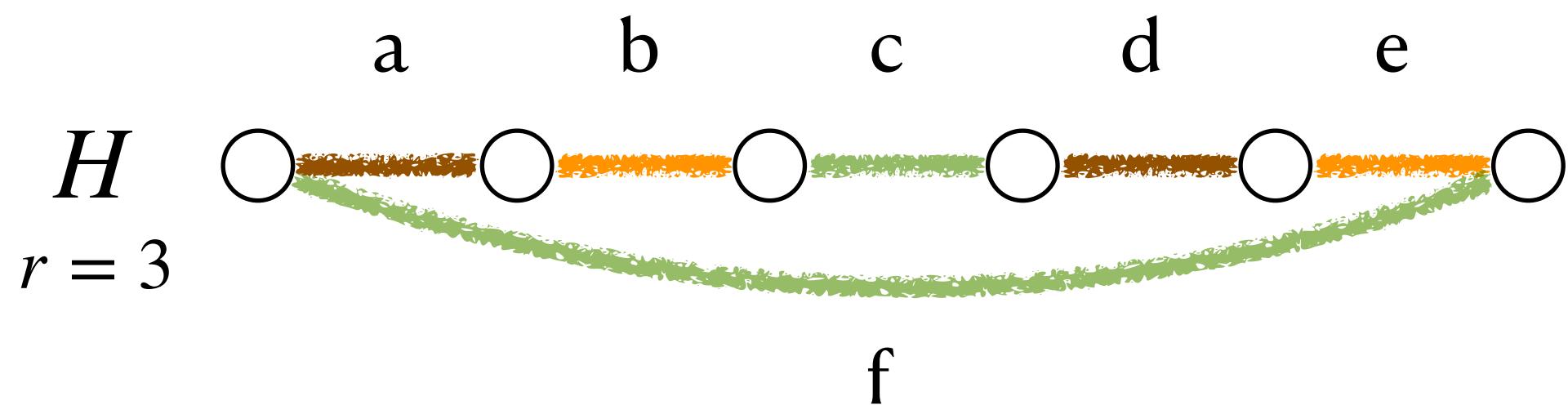
$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

*Rainbow Matching*: NP-hard [Le and Pfender, 2012].



**Input:**

- 2-regular graph  $H$ ,
- edge coloring s.t. adjacent edges have different colors AND each color is used exactly twice,
- an integer  $r$ .

**Output:** If it exists, a *rainbow matching* (i.e. a matching whose edges have distinct colors) of size  $r$ .

$p$ : parameter

$x$ : instance for classical problem

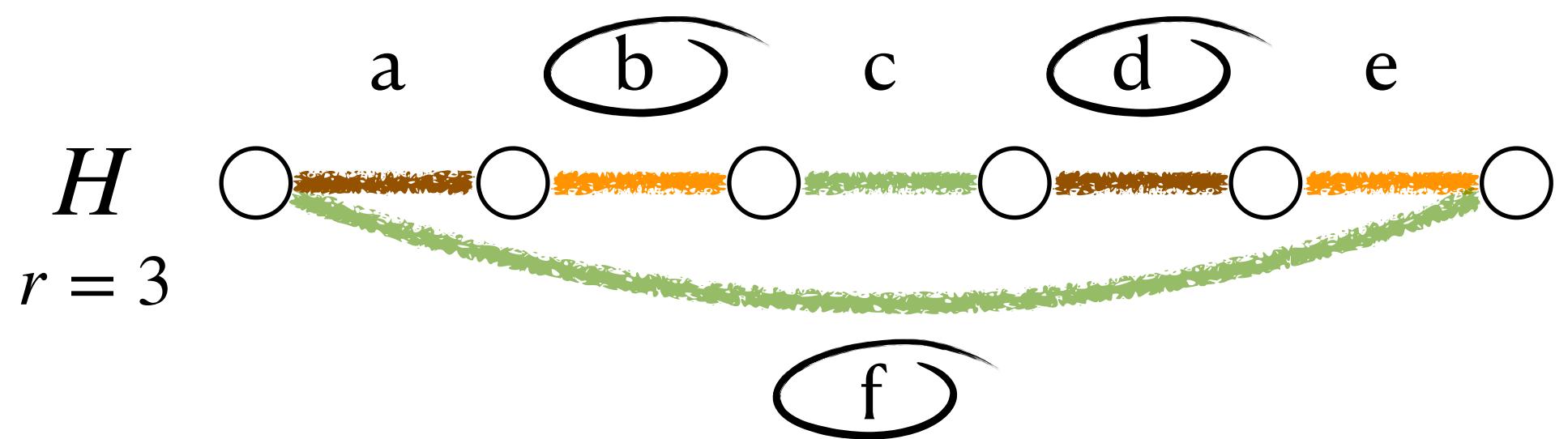
$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

*Rainbow Matching*: NP-hard [Le and Pfender, 2012].



**Input:**

- 2-regular graph  $H$ ,
- edge coloring s.t. adjacent edges have different colors AND each color is used exactly twice,
- an integer  $r$ .

**Output:** If it exists, a *rainbow matching* (i.e. a matching whose edges have distinct colors) of size  $r$ .

$p$ : parameter

$x$ : instance for classical problem

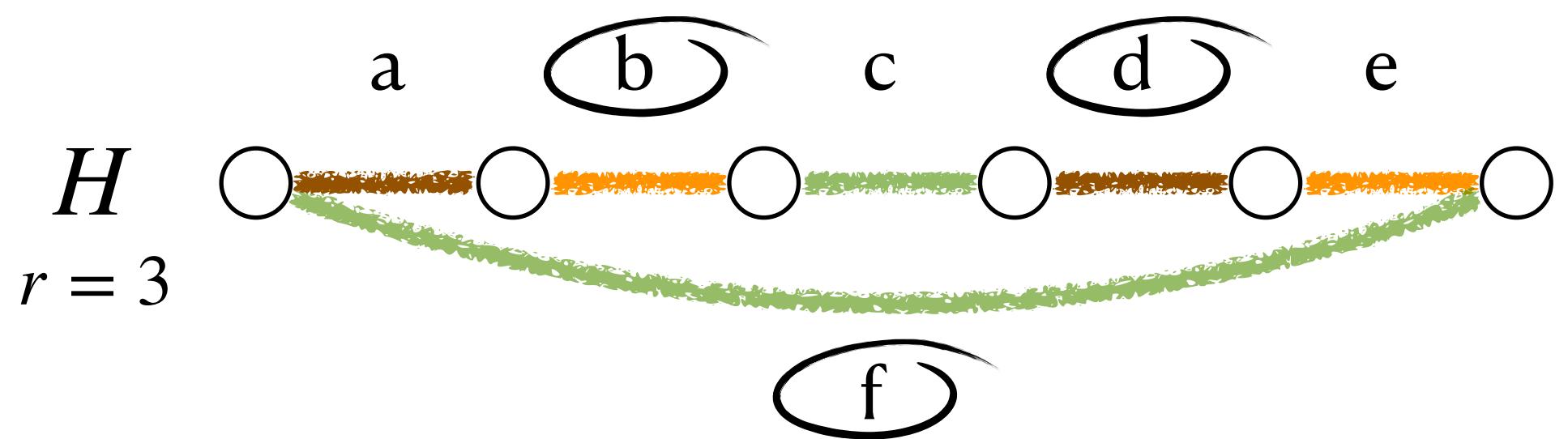
$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

*Rainbow Matching*: NP-hard [Le and Pfender, 2012].



**Input:**

- 2-regular graph  $H$ ,
- edge coloring s.t. adjacent edges have different colors AND each color is used exactly twice,
- an integer  $r$ .

**Output:** If it exists, a *rainbow matching* (i.e. a matching whose edges have distinct colors) of size  $r$ .

$p$ : parameter

$x$ : instance for classical problem

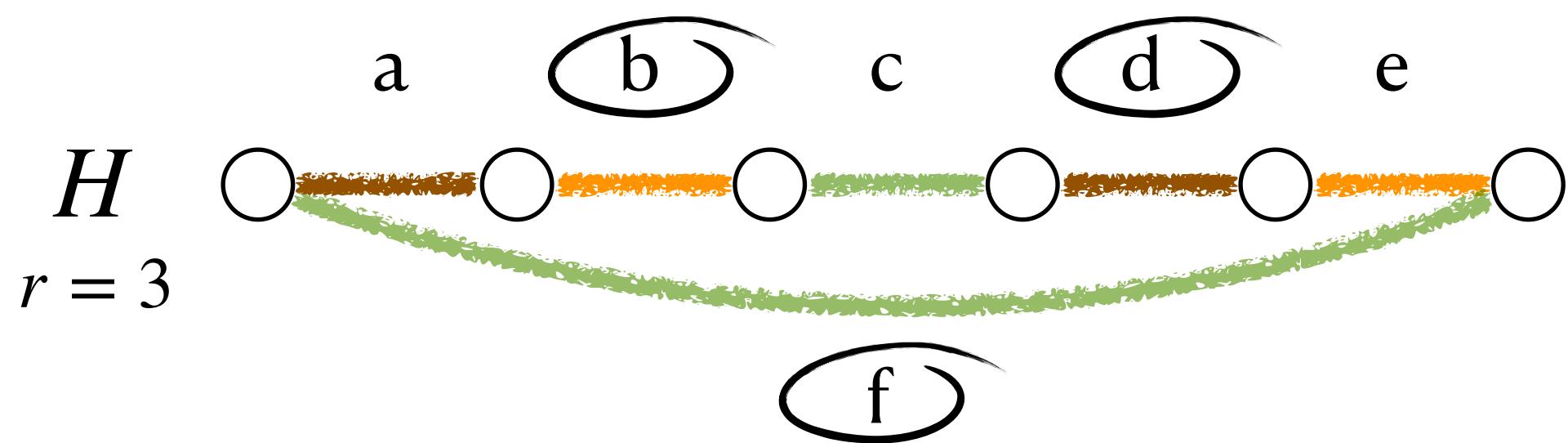
$k$ : number of tokens

$b$ : number of token slides

# st-Vertex Cut Discovery with Respect to Parameter k

- If an *or-cross-composition* from a classical NP-hard problem A into a parameterized problem B exists  $\Rightarrow$  no polynomial kernel for B unless  $NP \subseteq coNP \setminus poly$  [Bodlaender et al. 2014].
- An or-cross-composition includes a poly-time reduction from A to B.

*Rainbow Matching*: NP-hard [Le and Pfender, 2012].



**Input:**

- 2-regular graph  $H$ ,
- edge coloring s.t. adjacent edges have different colors AND each color is used exactly twice,
- an integer  $r$ .

**Output:** If it exists, a *rainbow matching* (i.e. a matching whose edges have distinct colors) of size  $r$ .

$p$ : parameter

$x$ : instance for classical problem

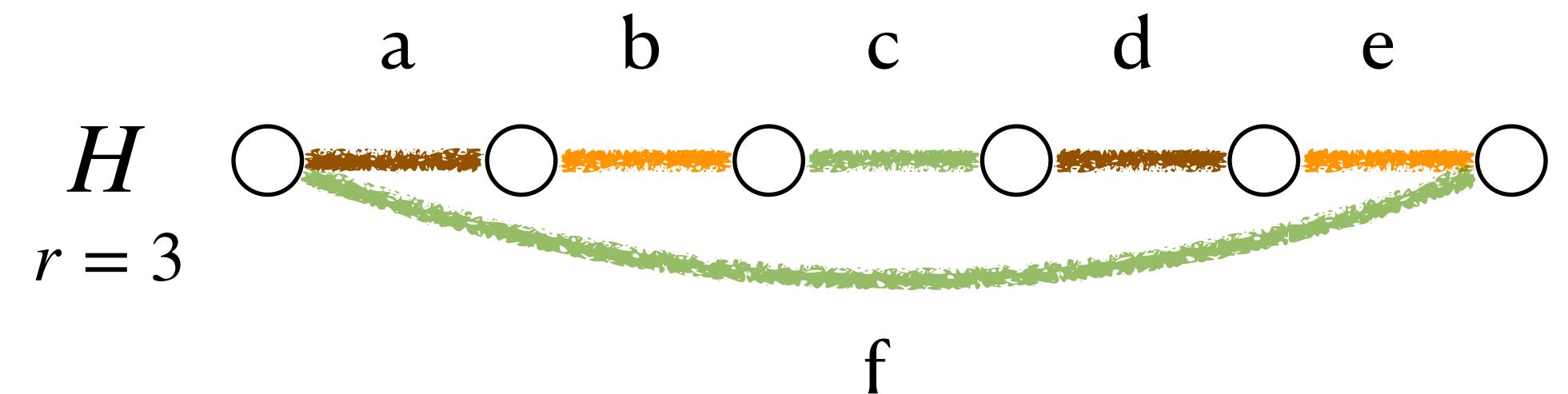
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

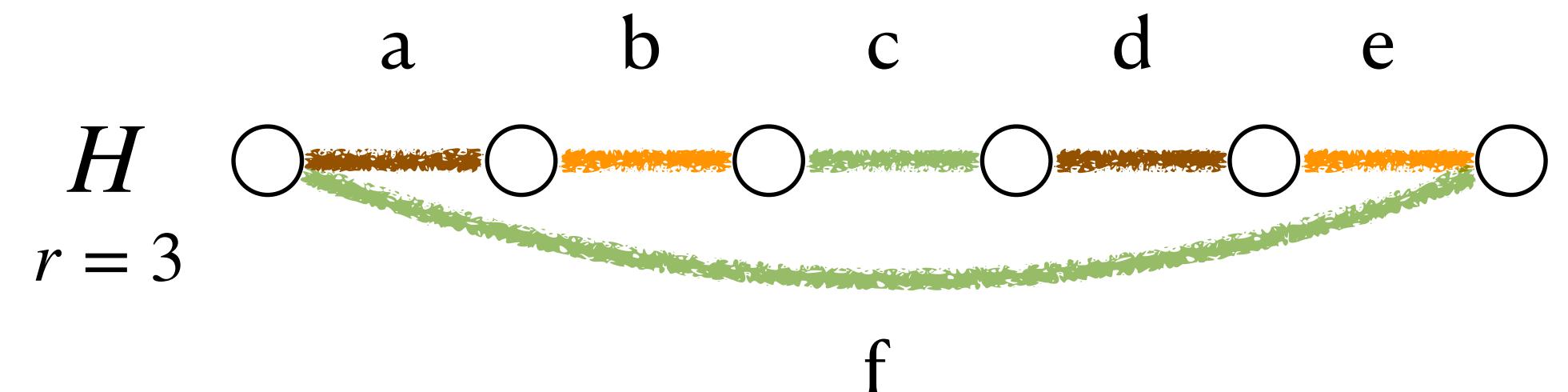
$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery

$G$



$p$ : parameter

$x$ : instance for classical problem

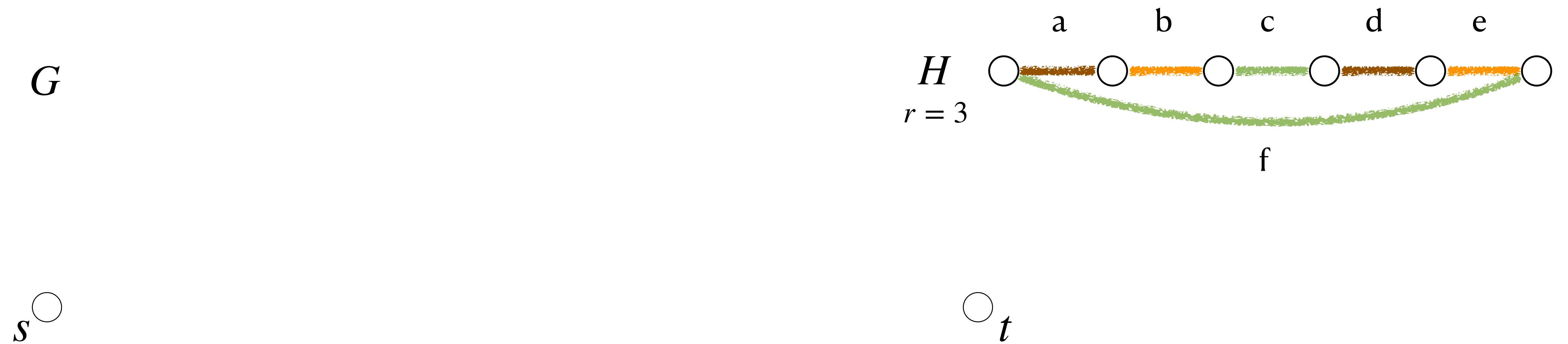
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

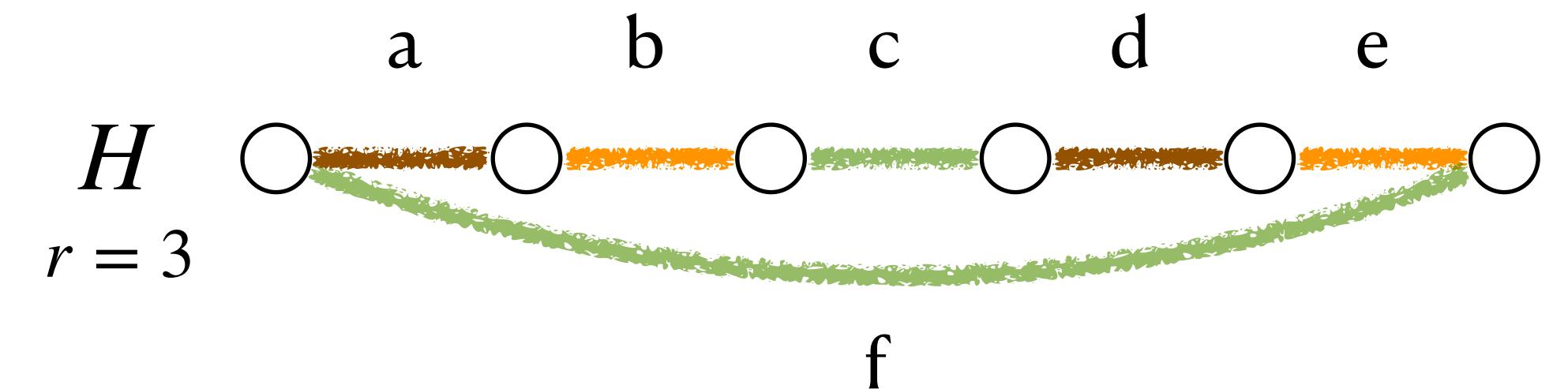
# Reduction from Rainbow Matching to st-Vertex Cut Discovery

$G$

$s_1$  ○

$s$  ○

$s_2$  ○



○  $t$

$p$ : parameter

$x$ : instance for classical problem

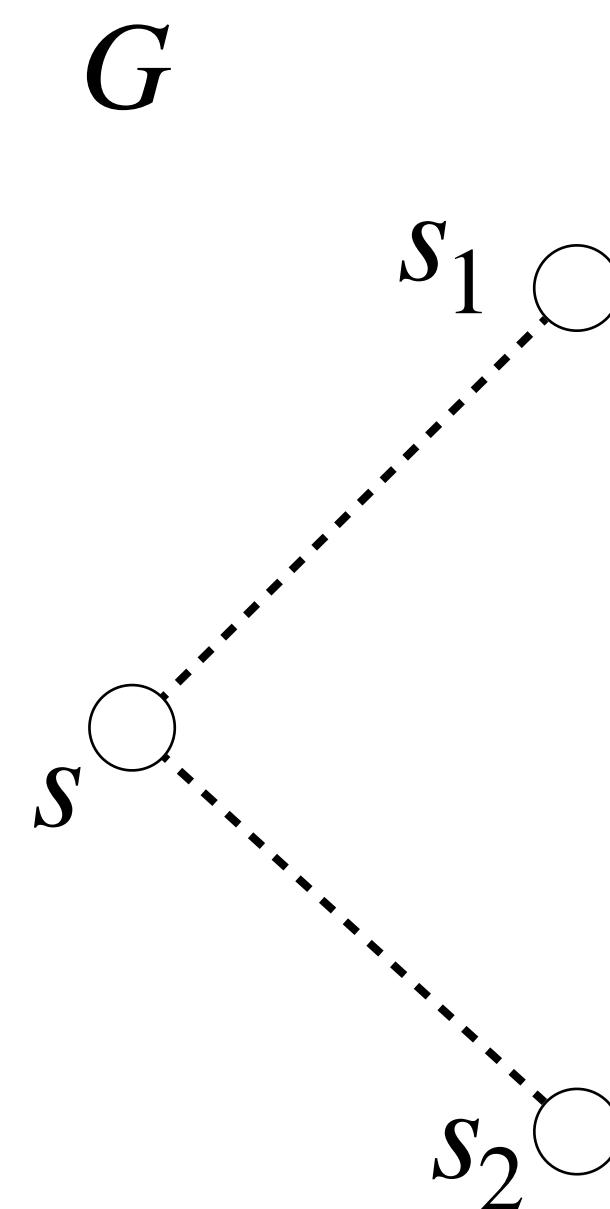
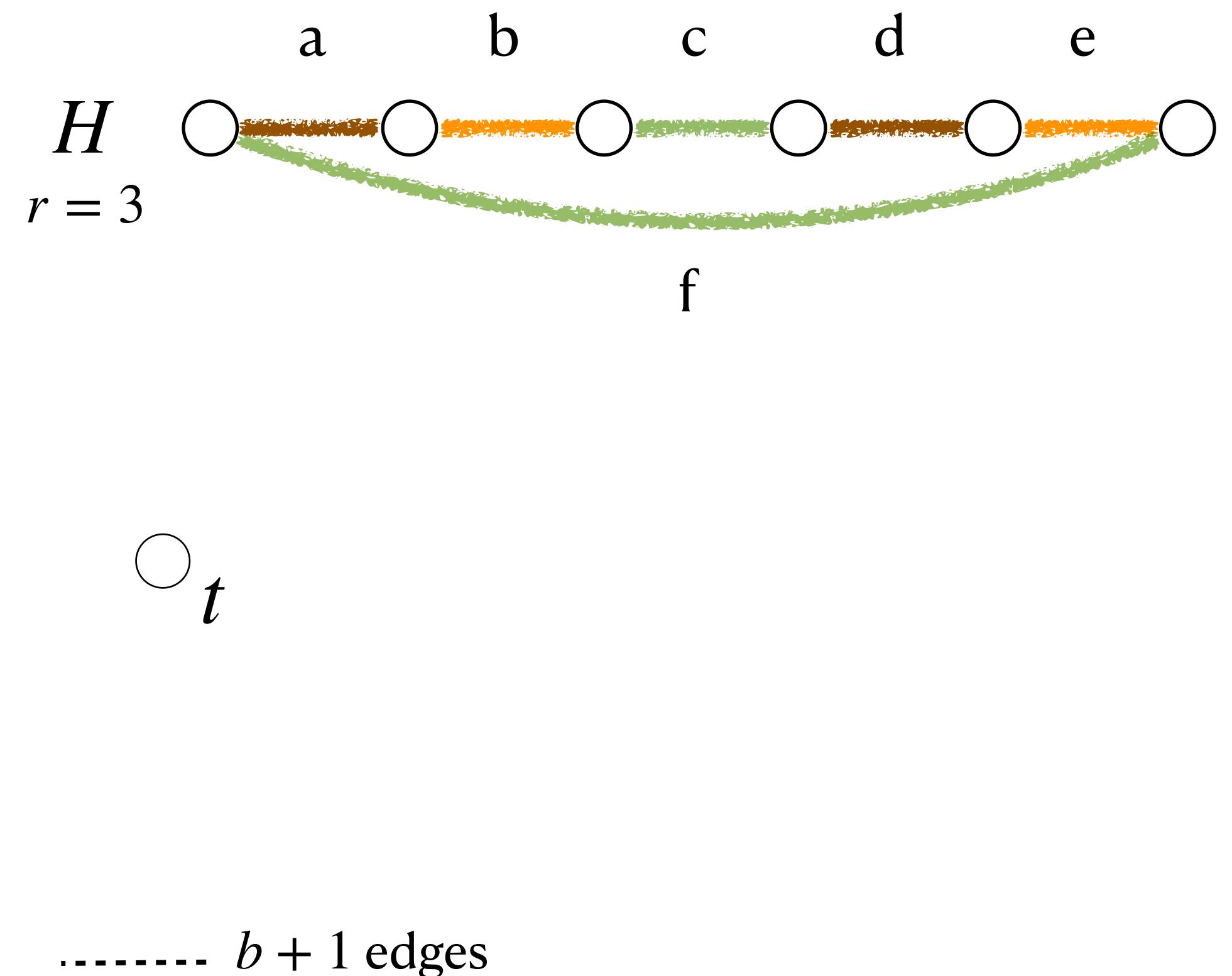
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

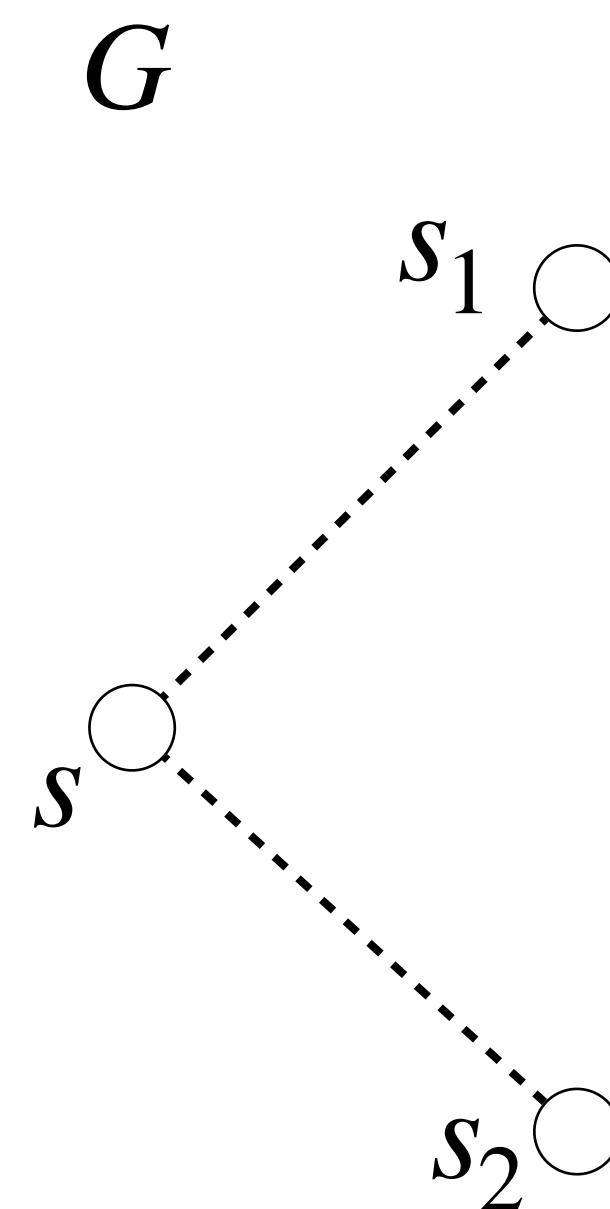
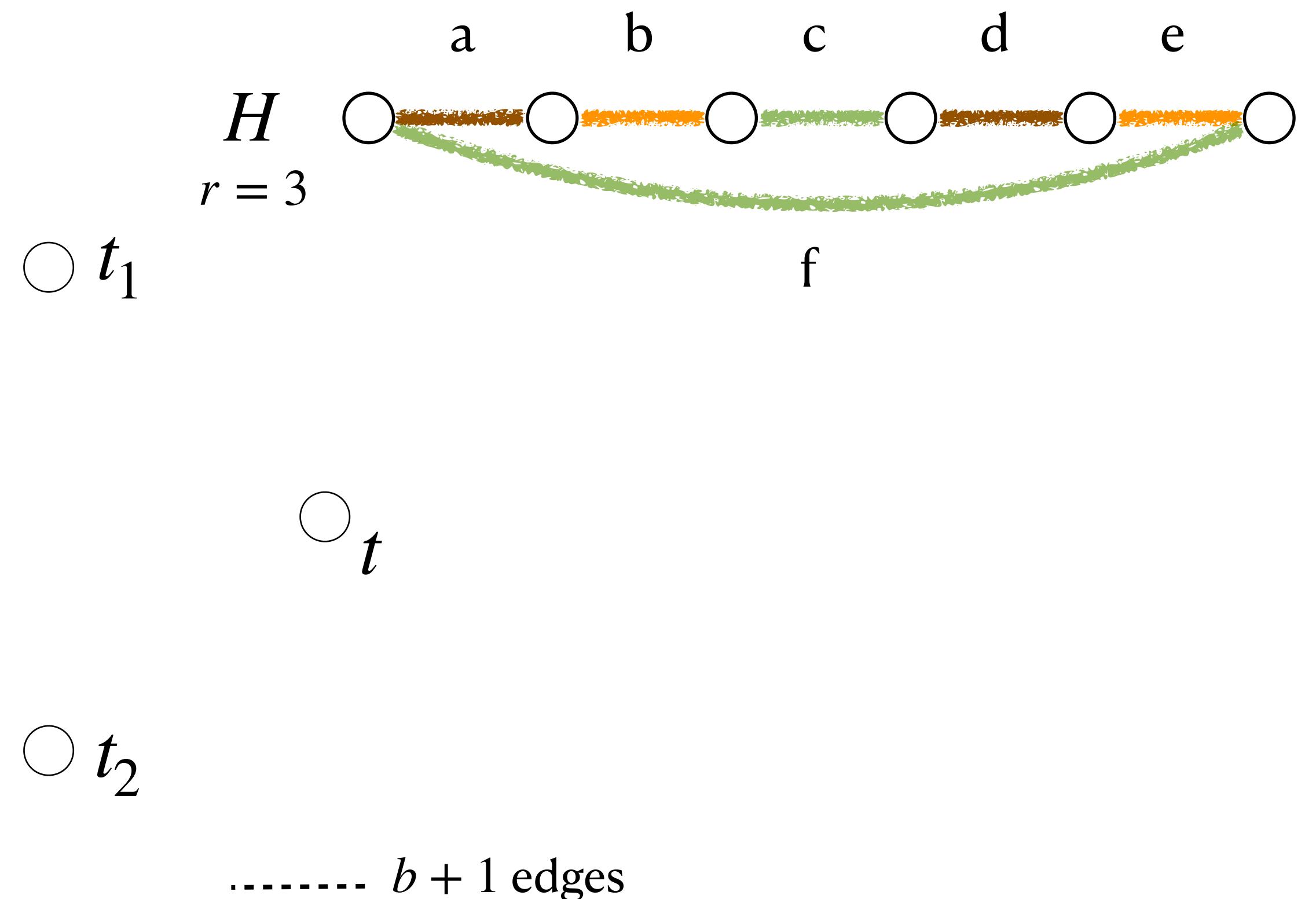
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

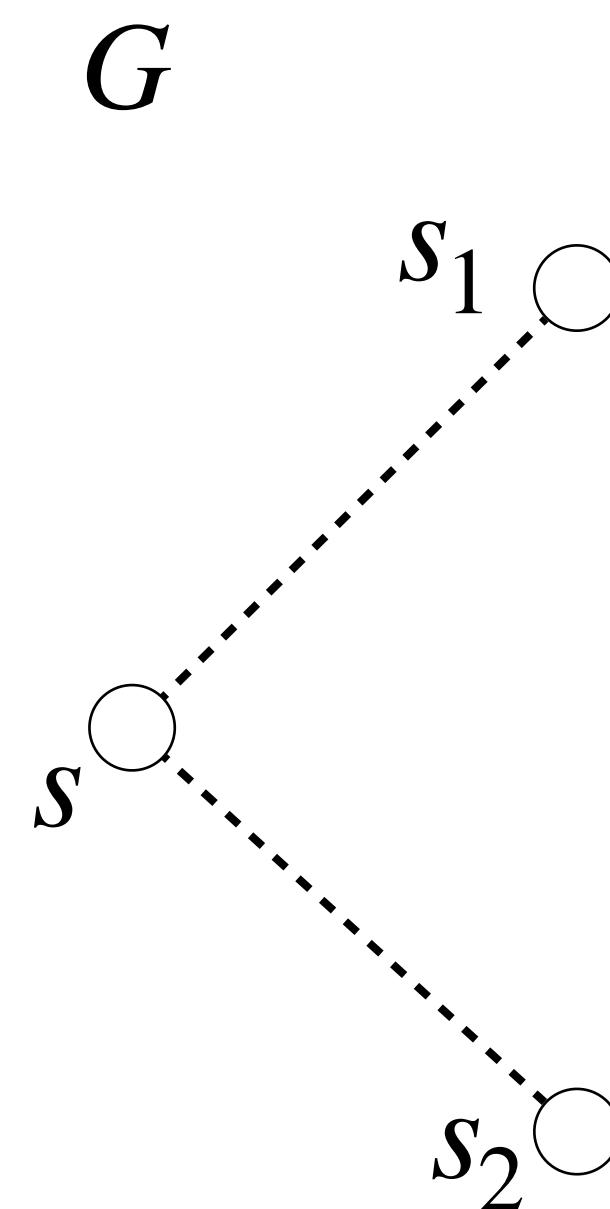
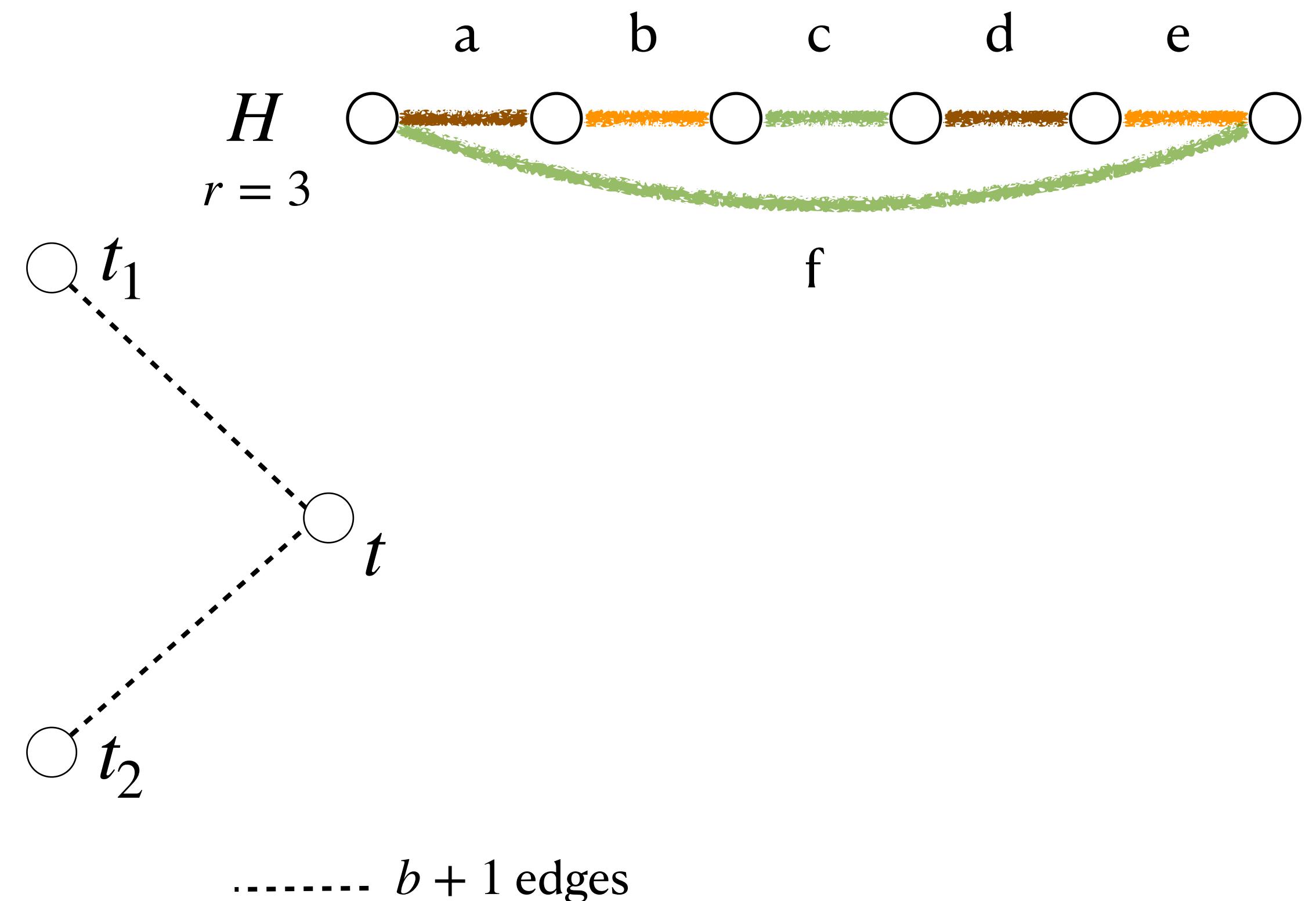
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

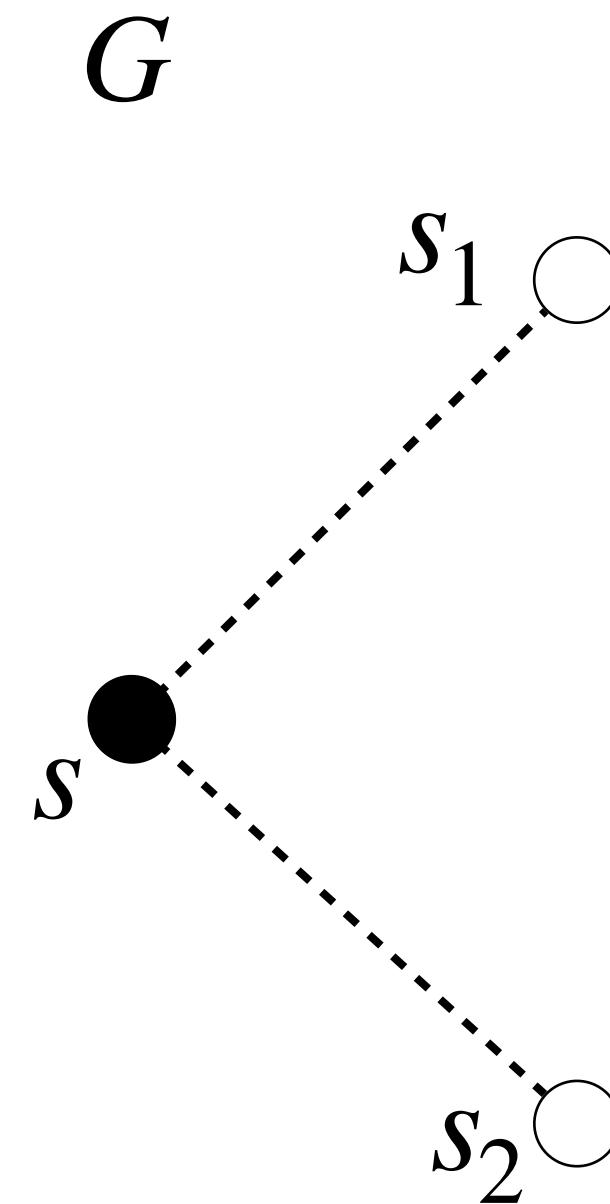
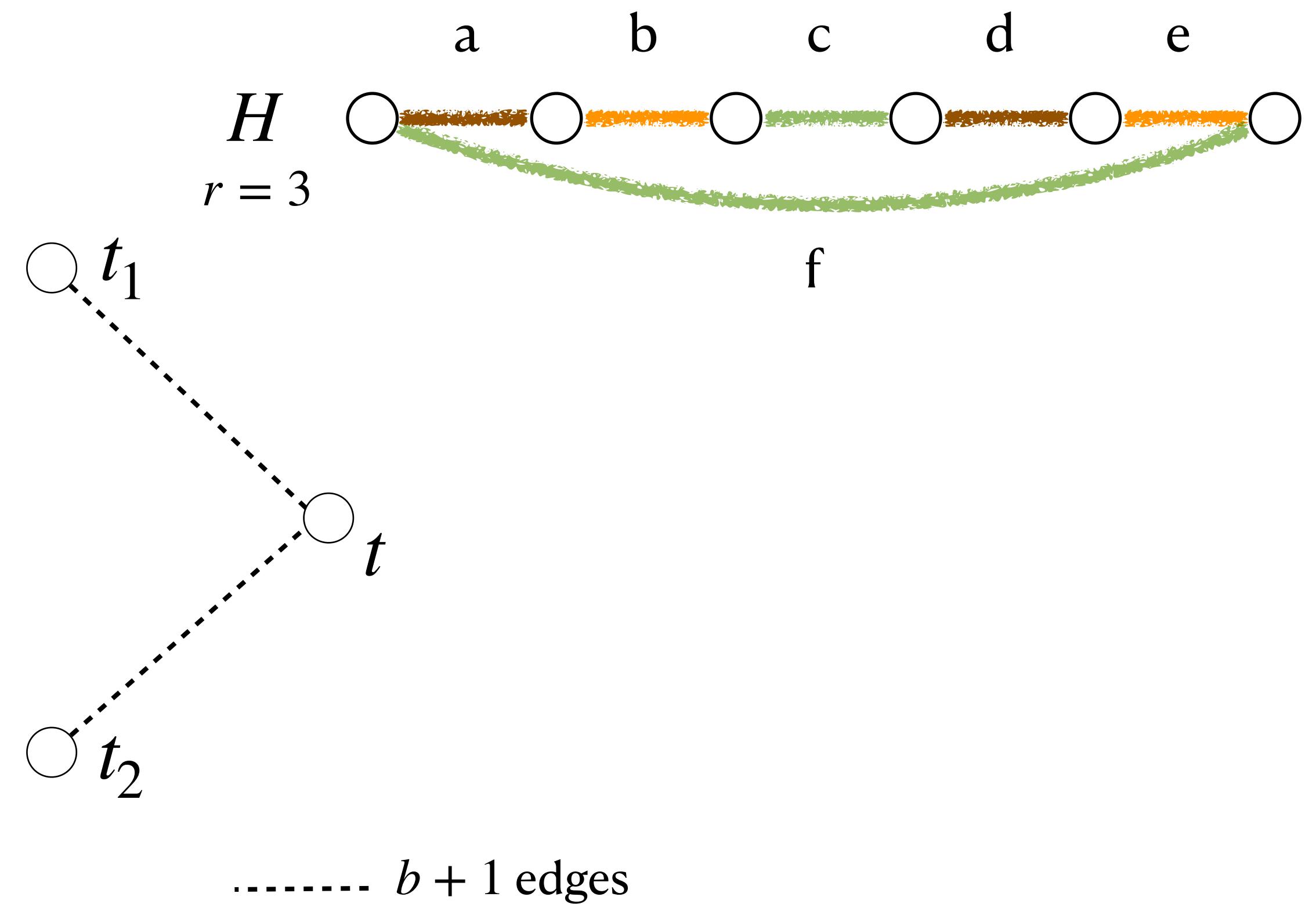
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

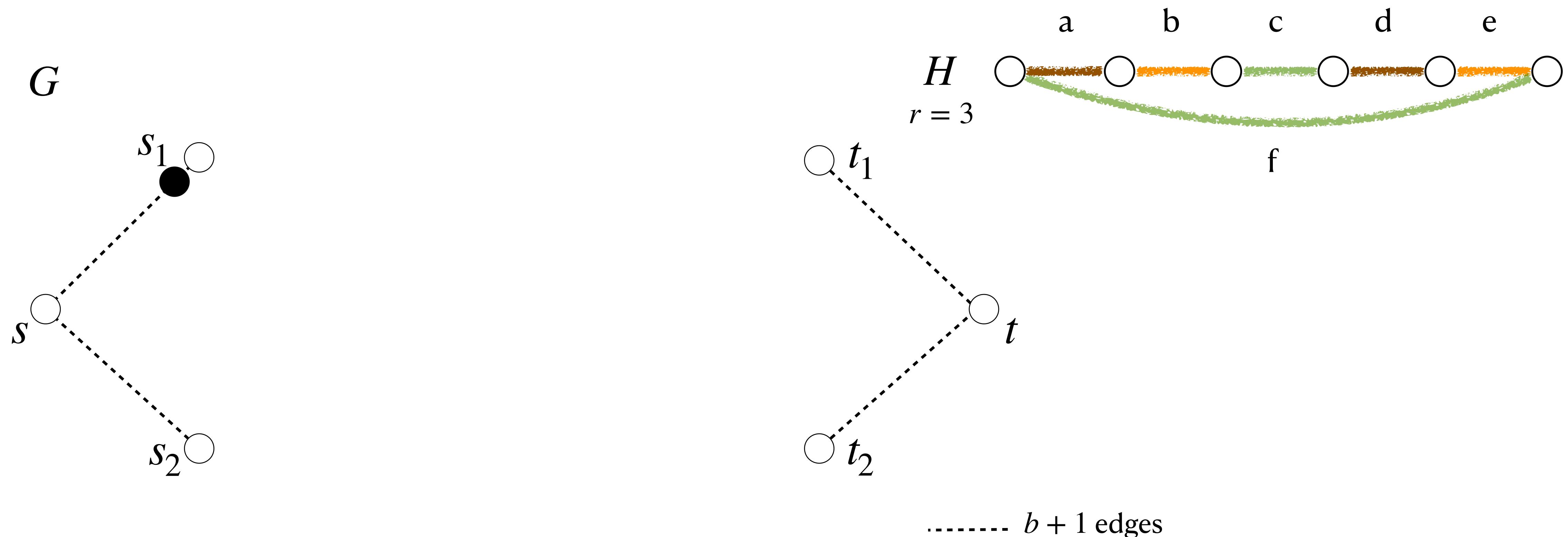
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

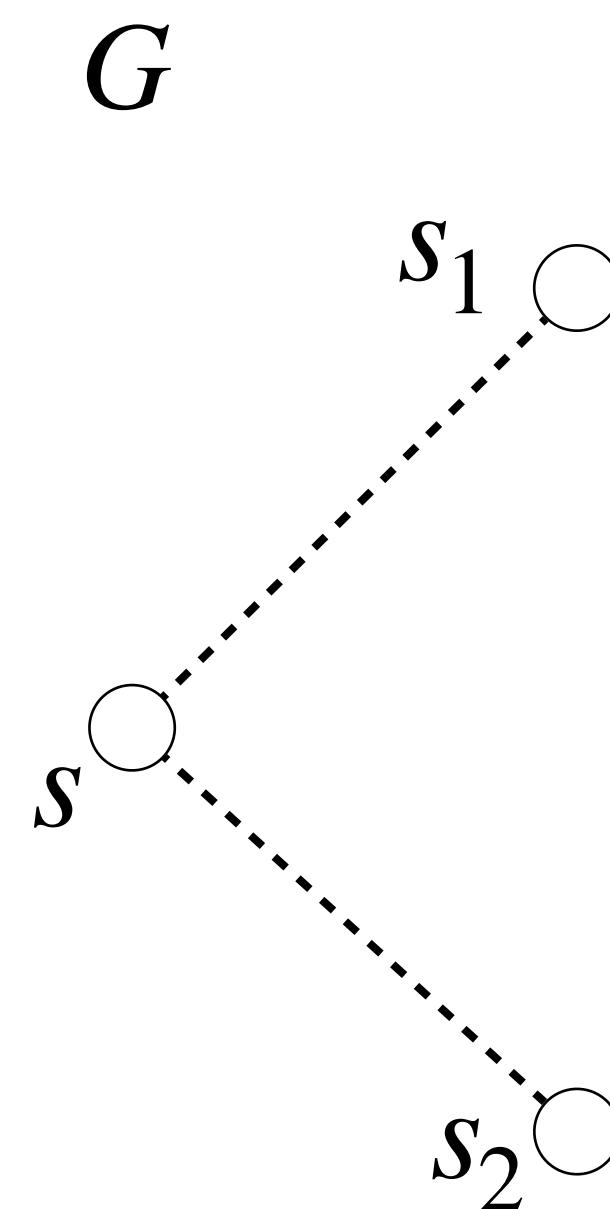
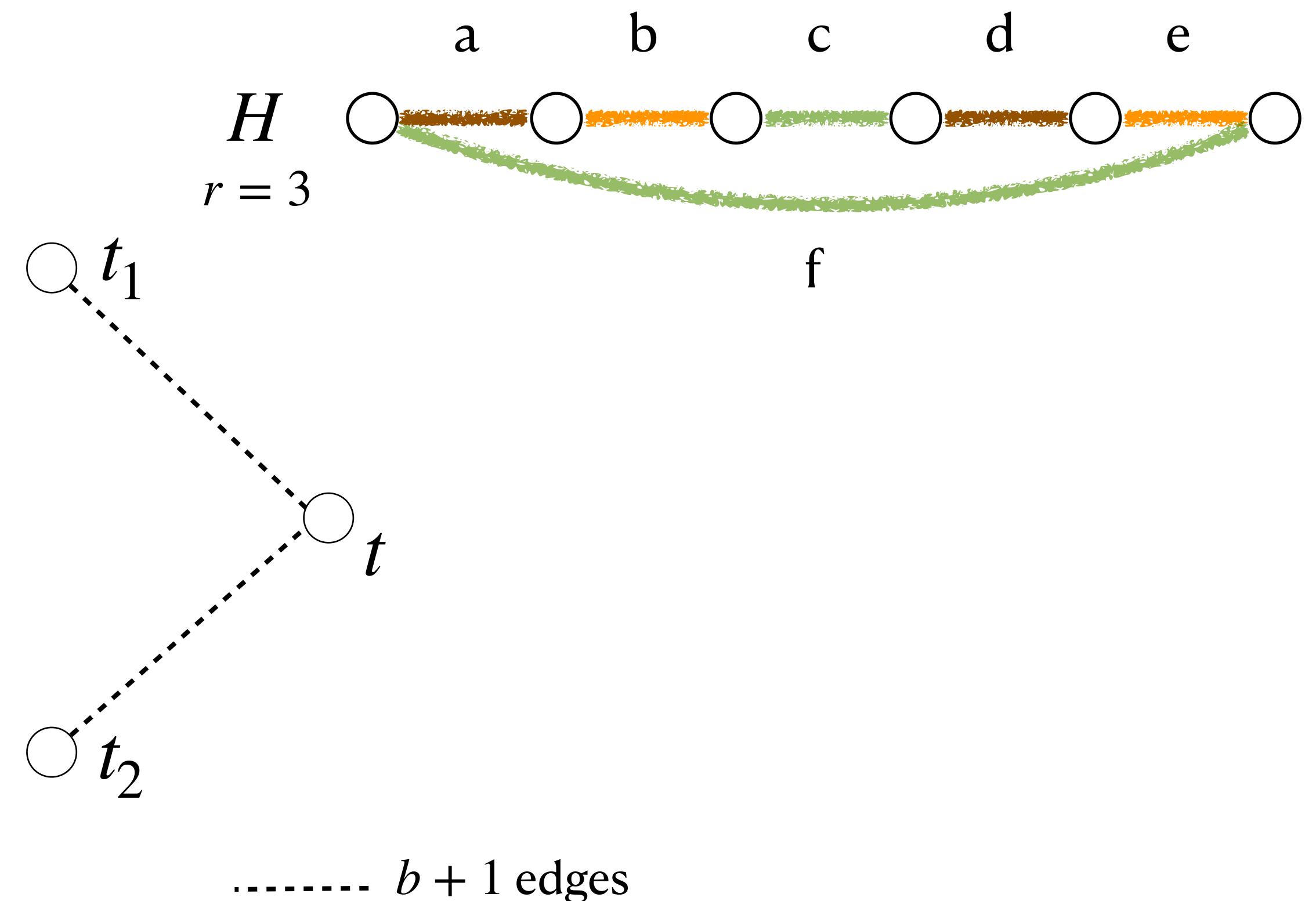
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

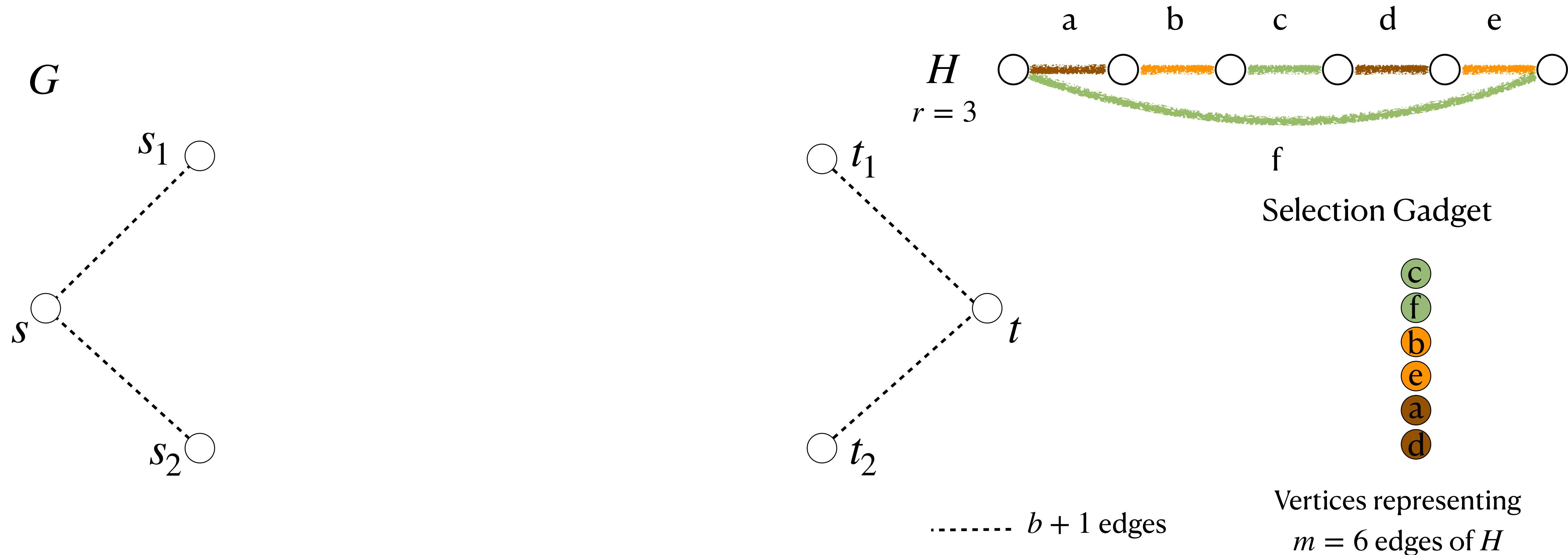
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

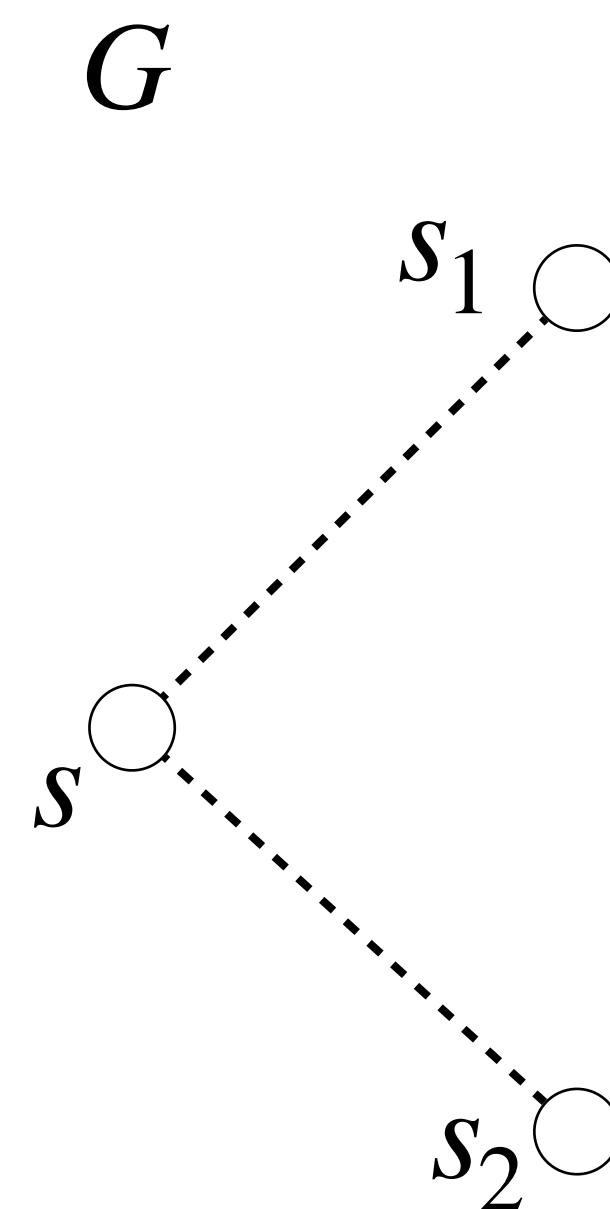
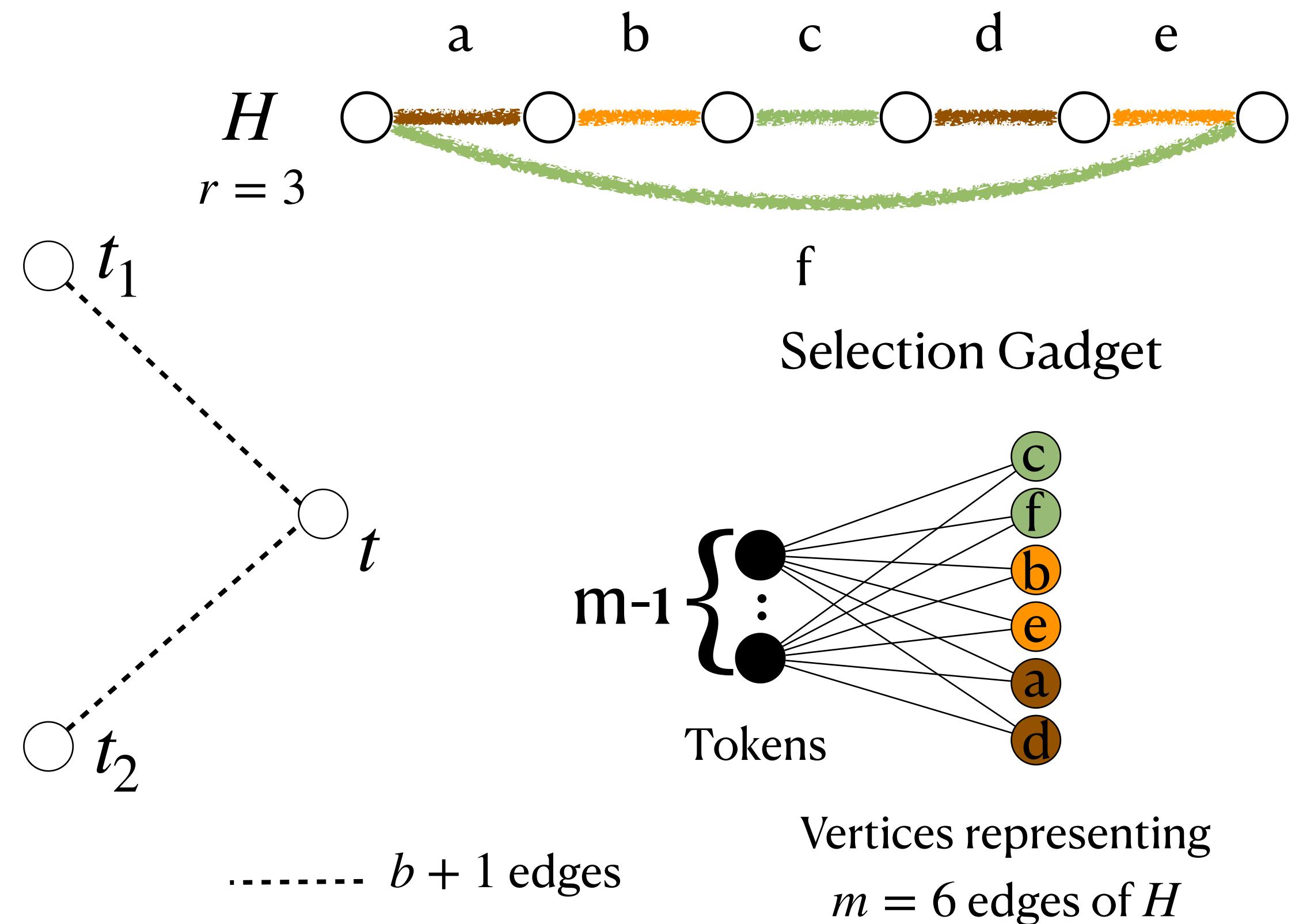
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

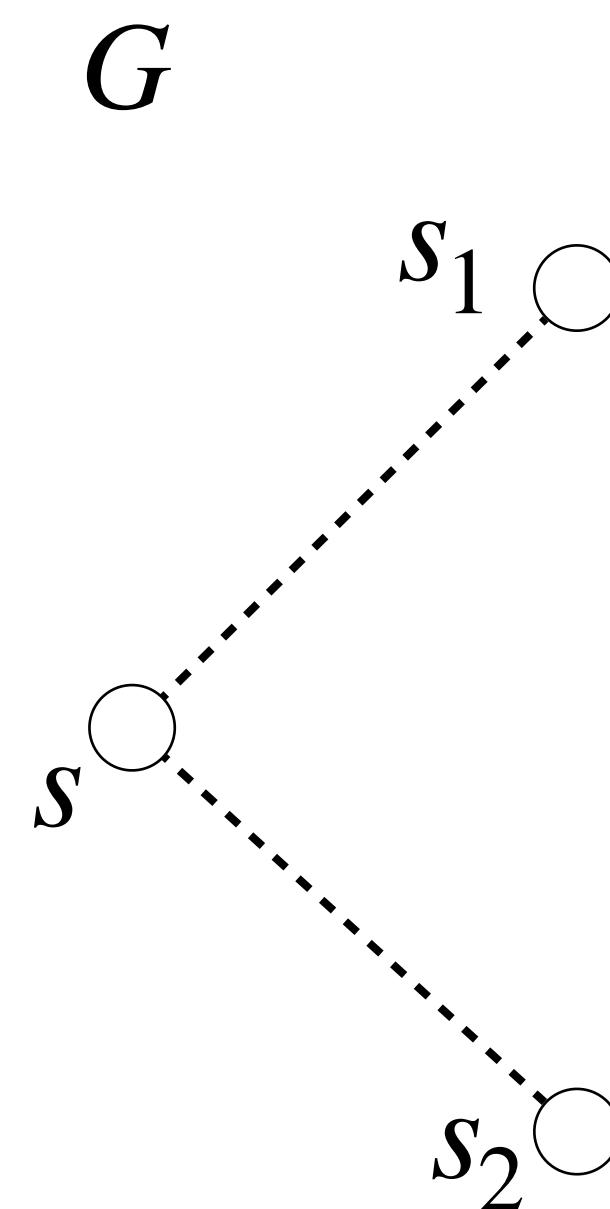
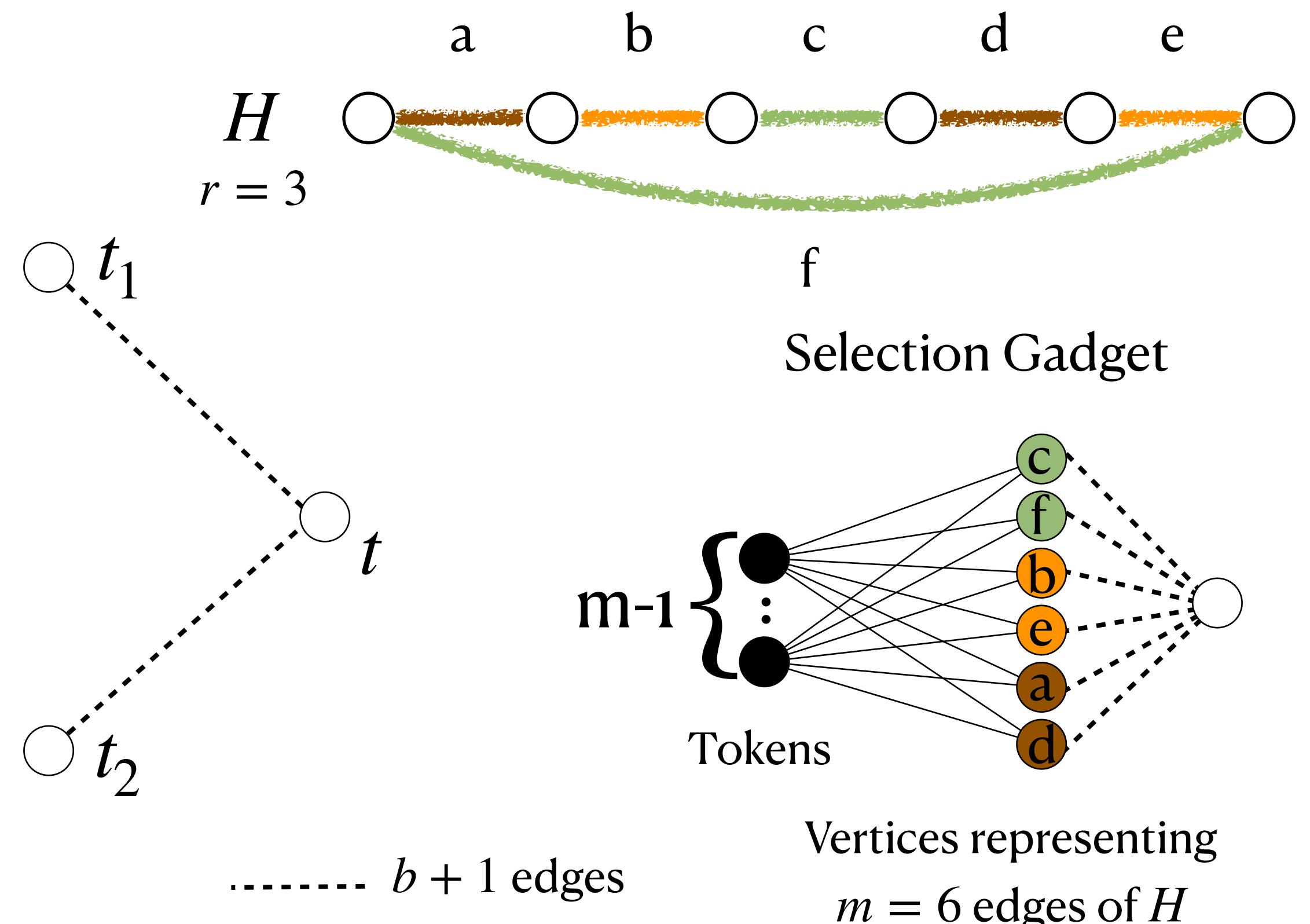
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

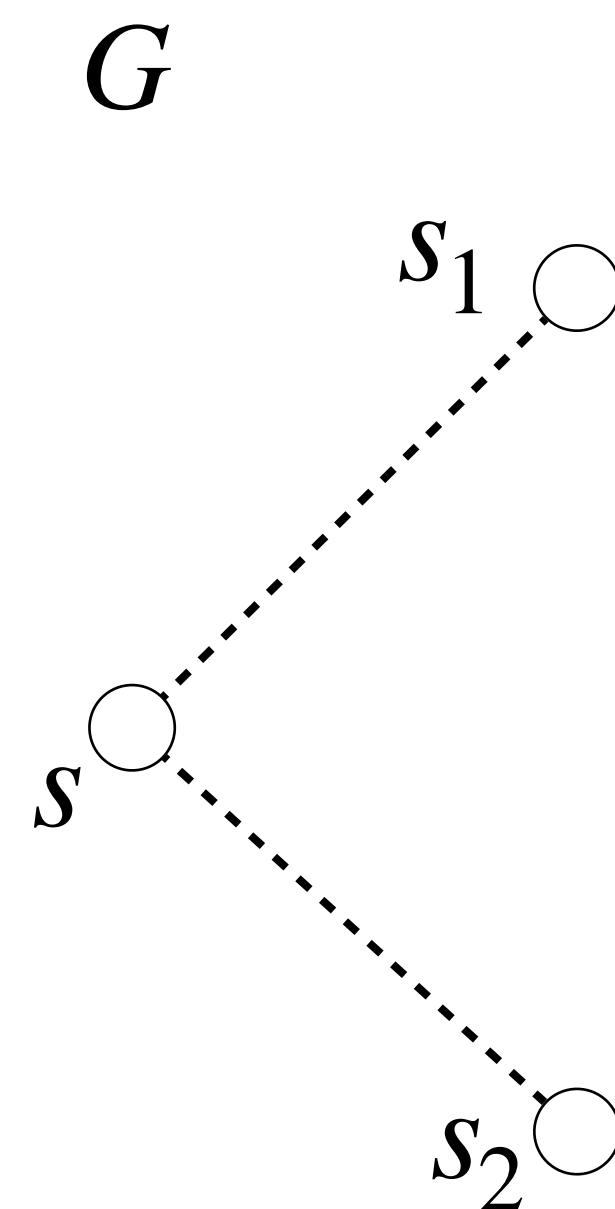
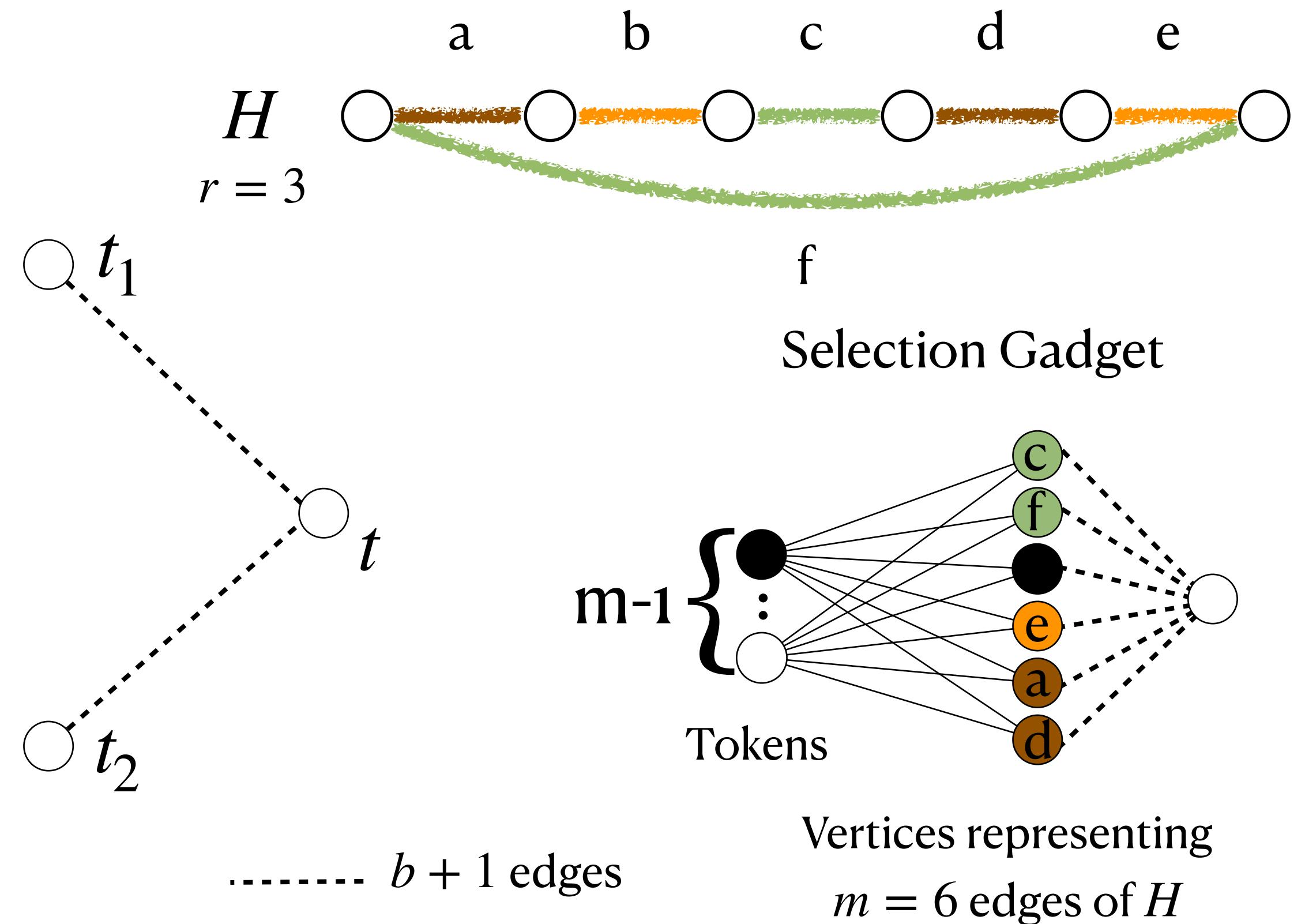
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

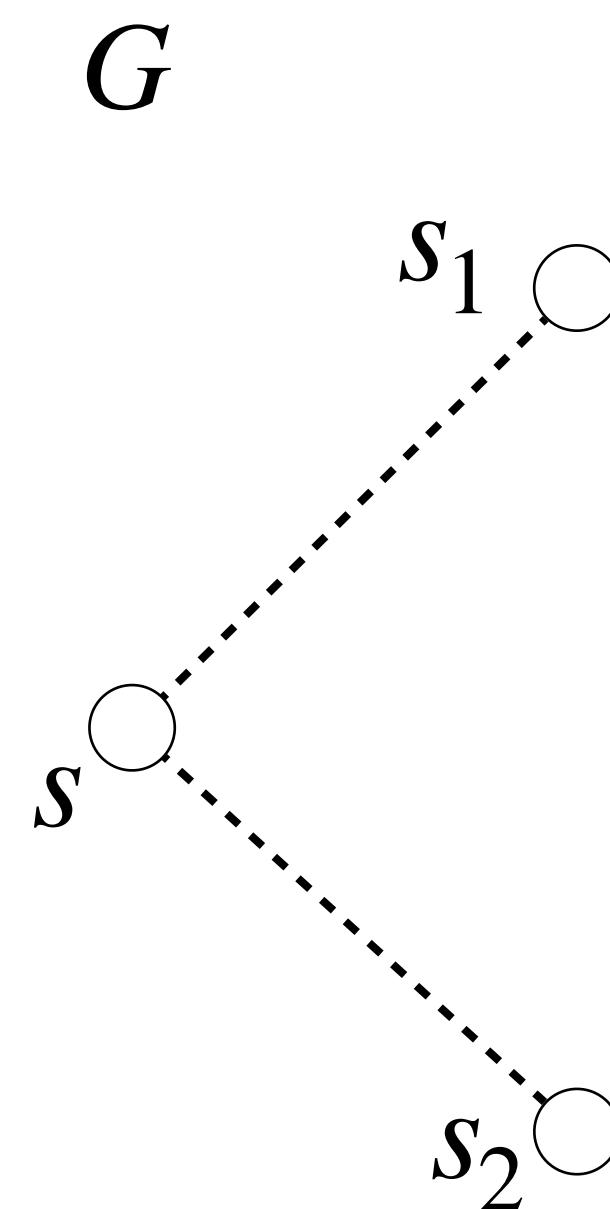
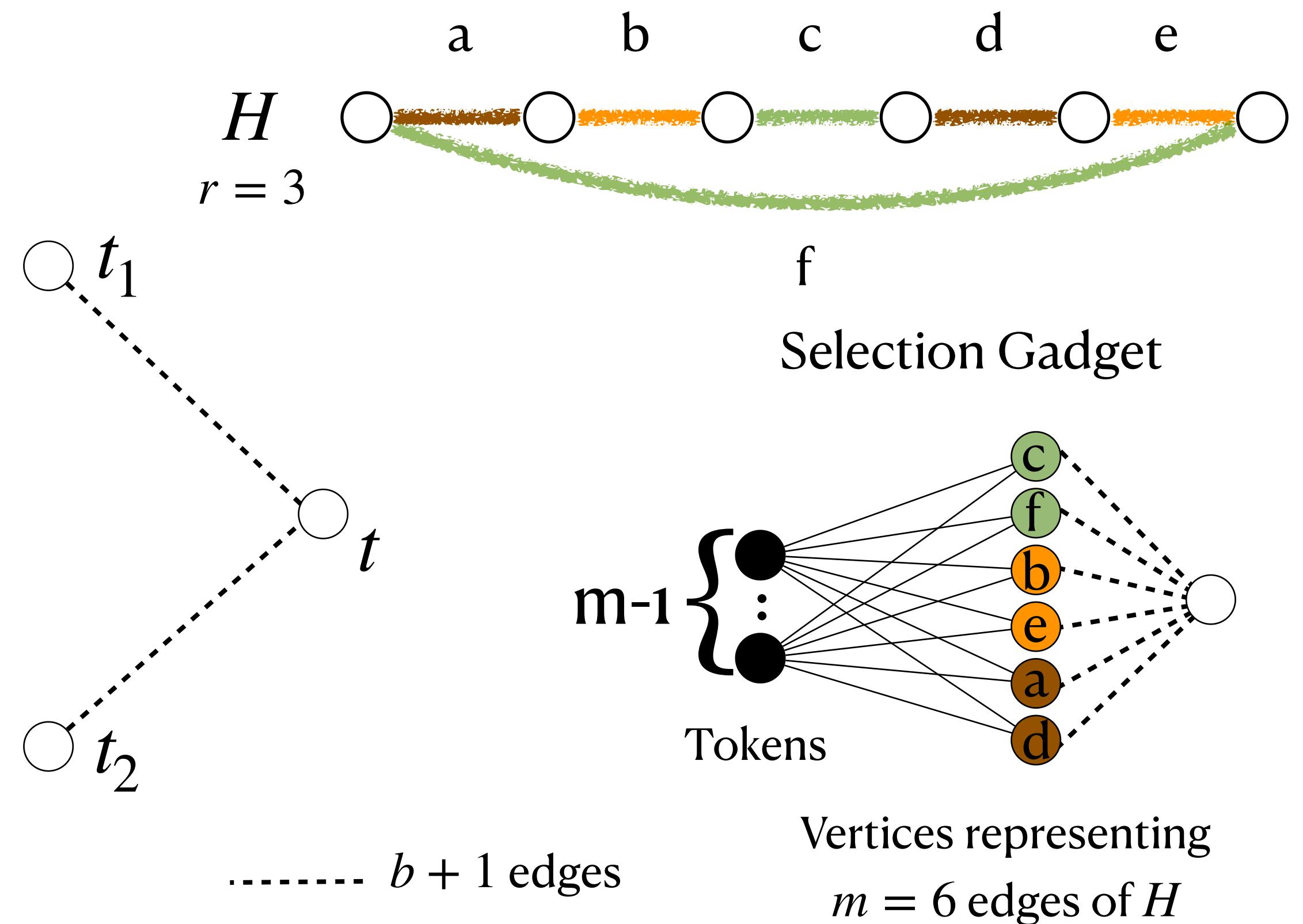
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

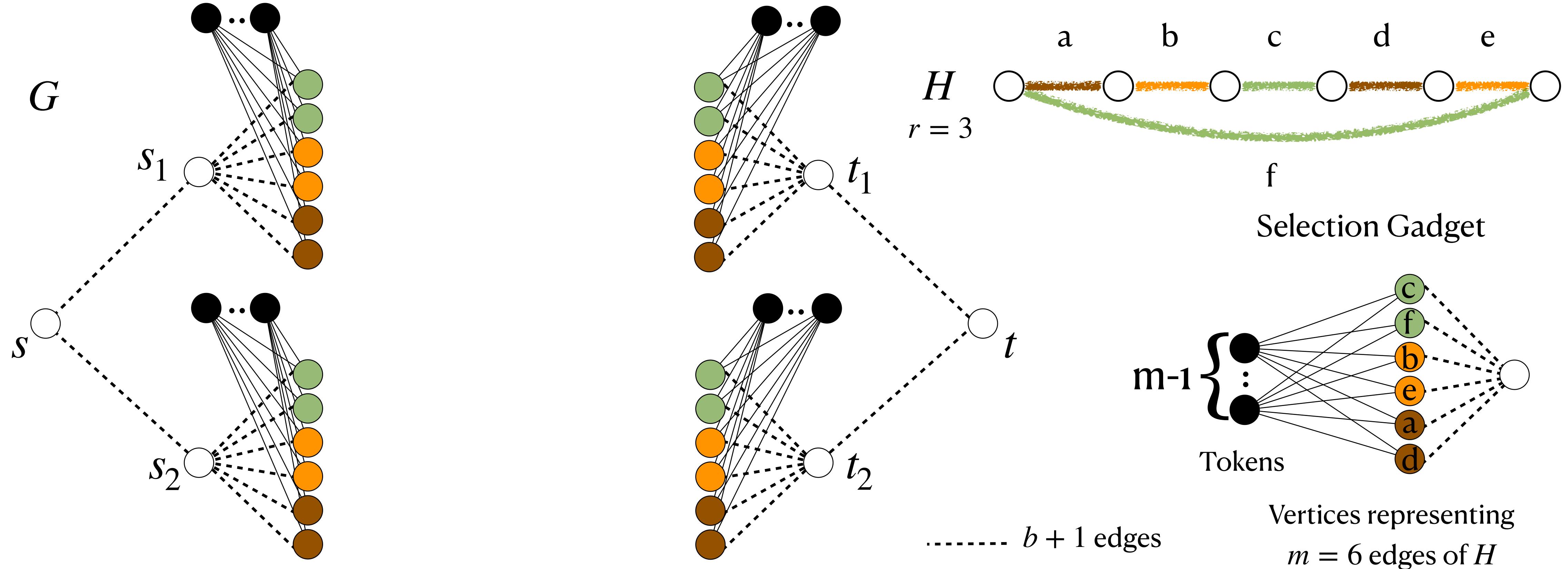
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

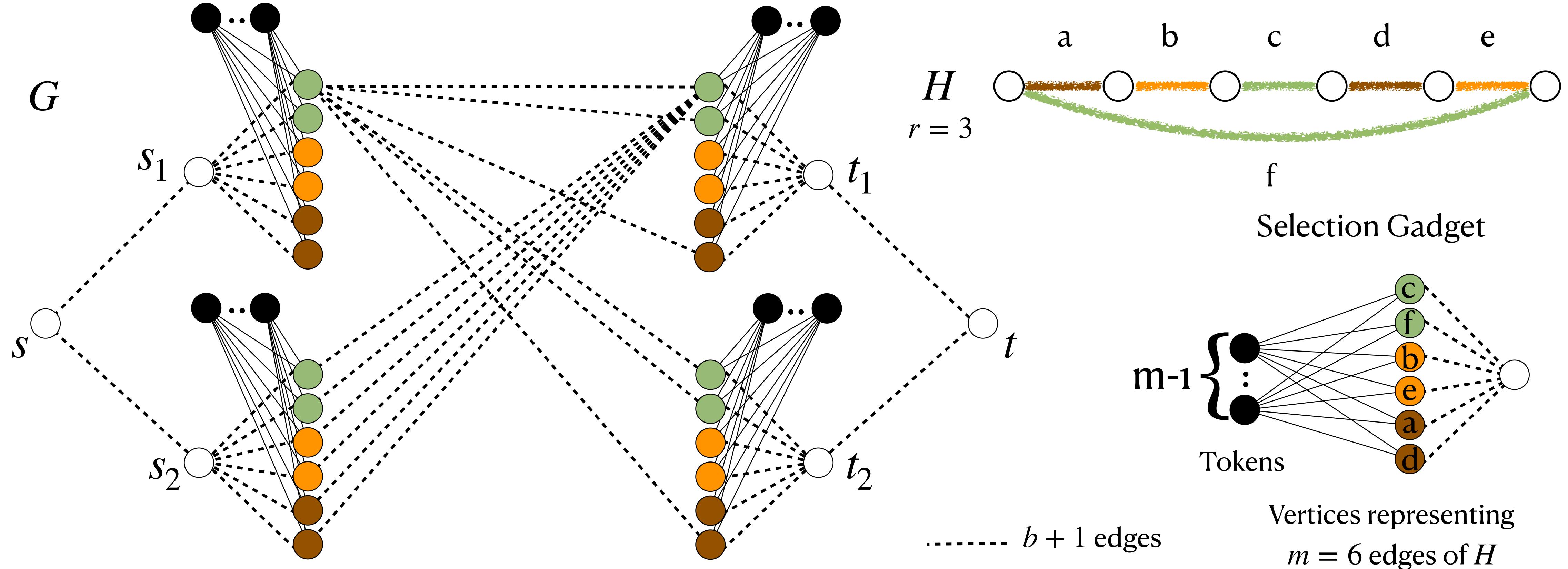
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

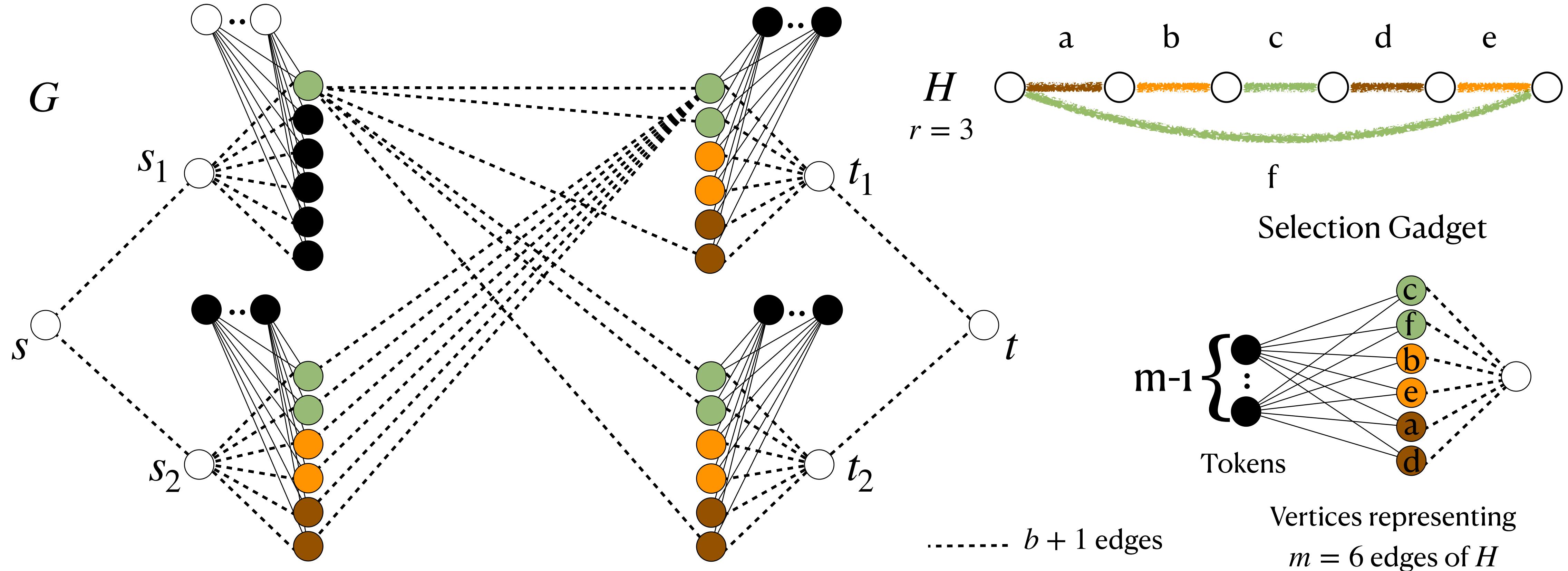
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

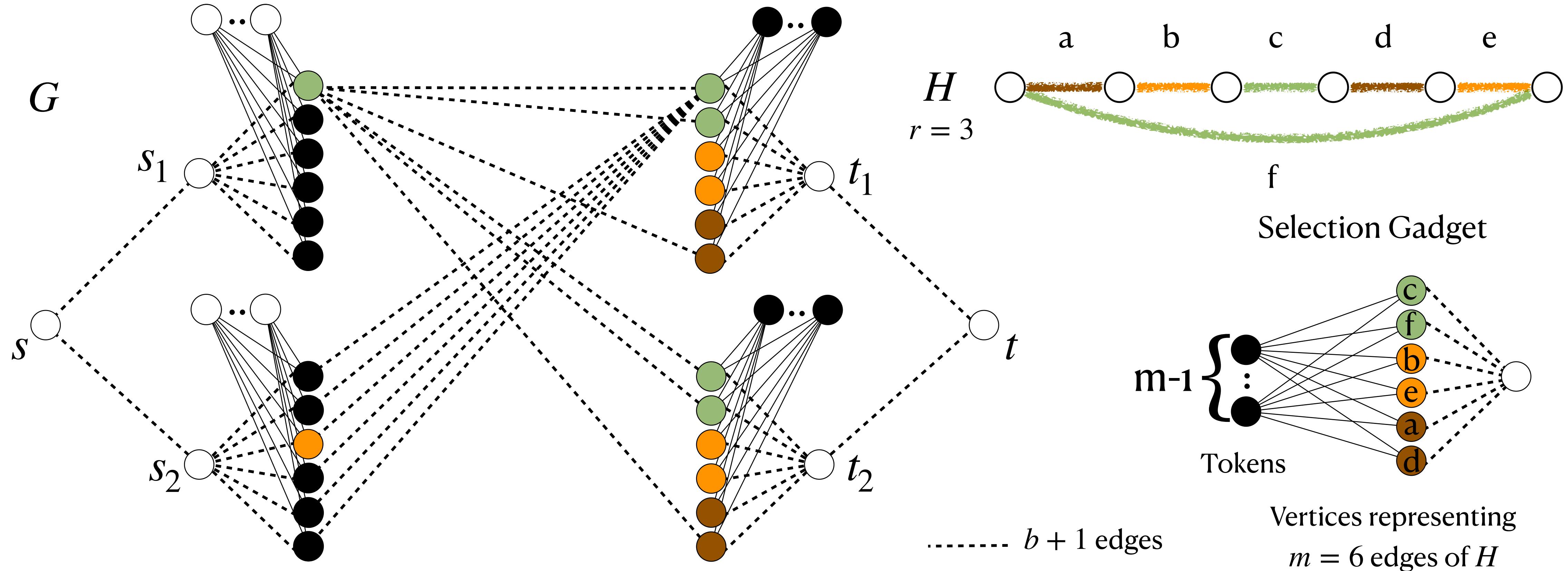
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

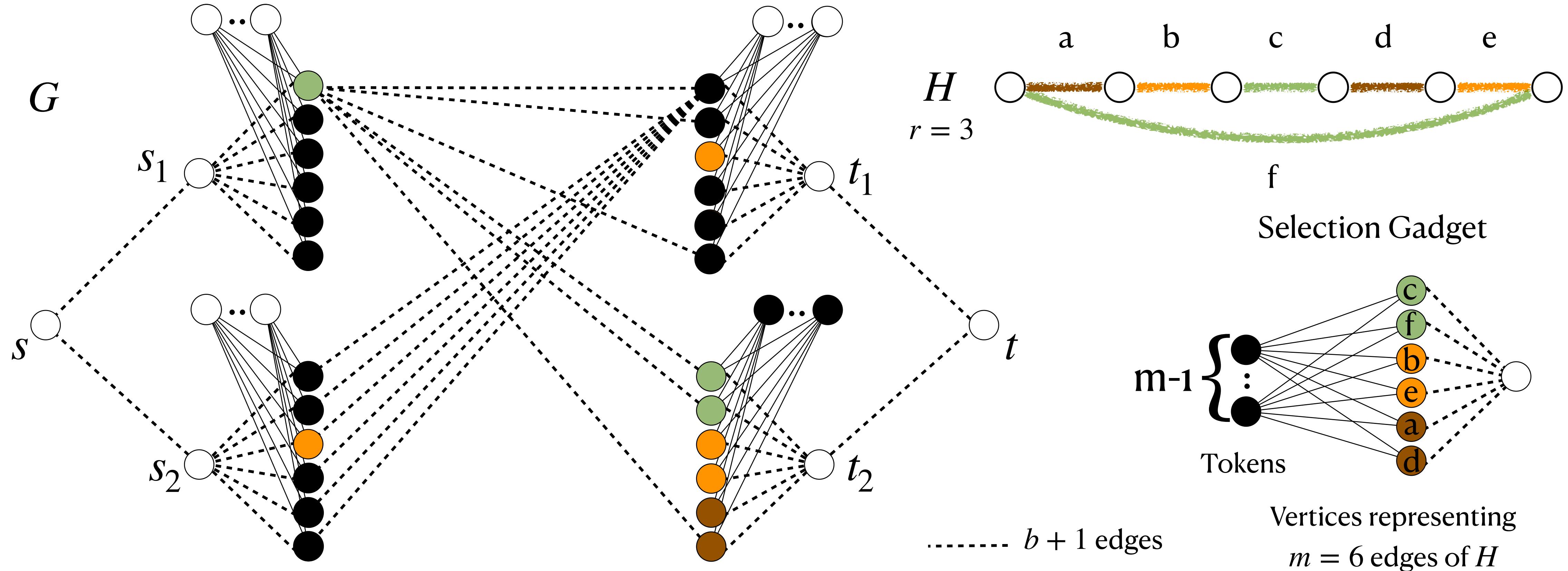
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

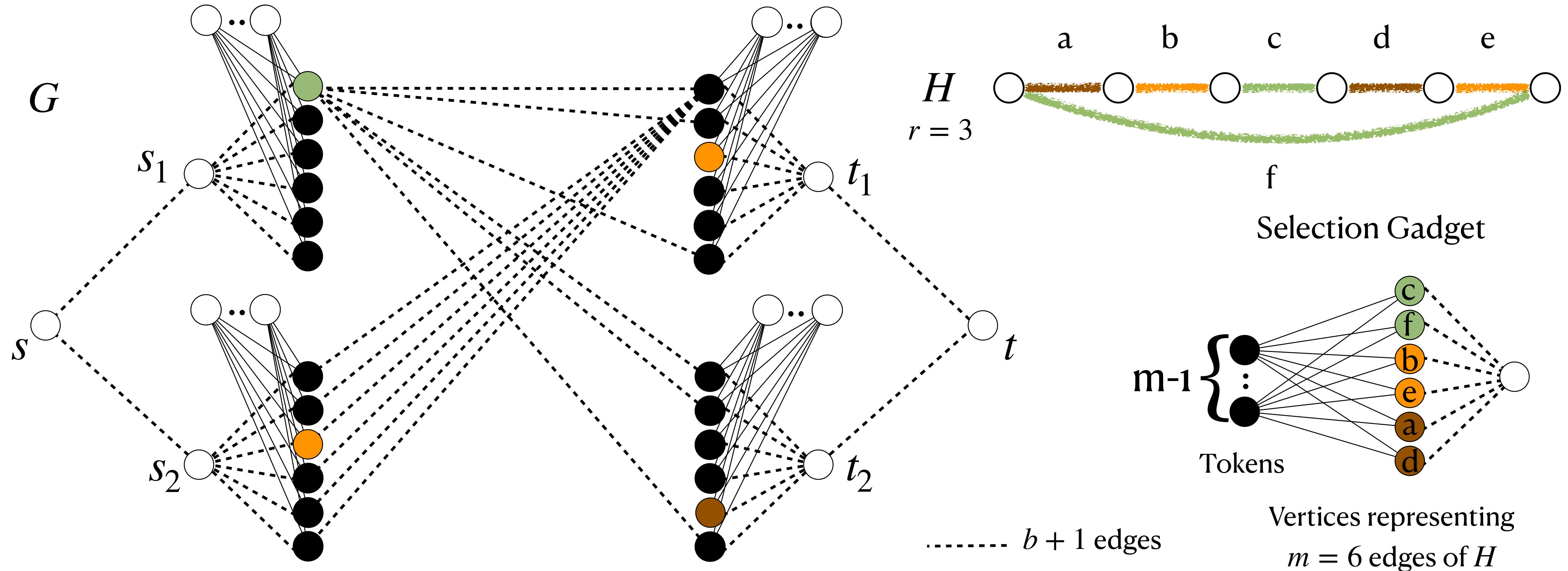
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



$p$ : parameter

$x$ : instance for classical problem

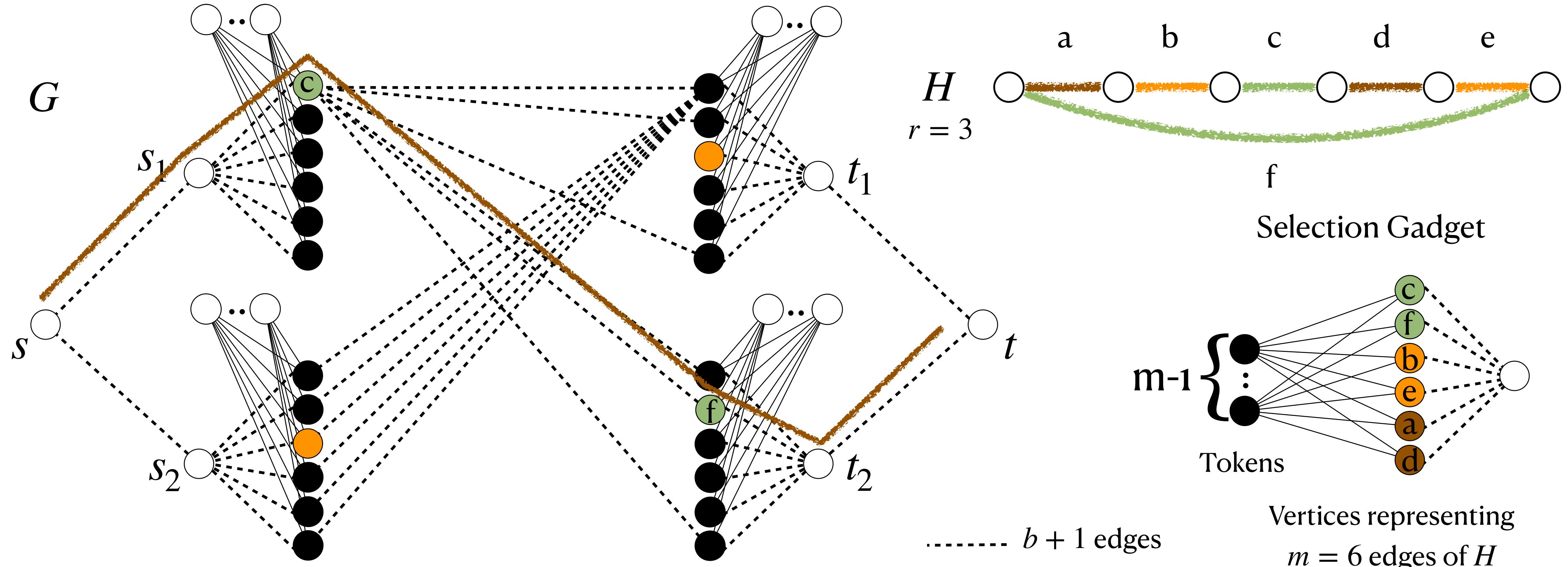
$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching

# Reduction from Rainbow Matching to st-Vertex Cut Discovery



- If a cut can be reached in fewer than  $b$  token slides, the vertices that remain free in the gadgets represent the edges of the rainbow matching (and vice versa).

$p$ : parameter

$x$ : instance for classical problem

$k$ : number of tokens

$b$ : number of token slides

$s, t$ : vertices to cut

$r$ : size of matching



Naomi Nishimura



Vijayaragunathan  
Ramamoorthi



*Stephanie Maaz*  
*smaaz@uwaterloo.ca*



**Thank you.**

Mario Grobler



Amer E. Mouawad



Sebastian Siebertz

